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A B S T R A C T

This case study examined the knowledge of preservice mathematics teachers (PMTs) in analyzing and responding 
to student errors. Participants were 41 master’s level PMTs who had completed foundational mathematics ed
ucation courses. They evaluated hypothetical student work solving a compound probability problem using a tree 
diagram. Through fine-grained qualitative analysis of written responses, researchers found PMTs proficiently 
identified and interpreted errors, employing both “show-tell” and “give-ask” response strategies. Key weaknesses 
included over-emphasis on procedures, low active utilization of errors, and communication barriers. The study 
highlights implications for enhancing PMTs’ error-handling skills in teacher education and improving probability 
teaching.

1. Introduction

Probability is a branch of mathematics that addresses topics such as 
random events and uncertainty (Korkmaz & Alkan, 2023), and its 
reasoning structure differs from that of other mathematical branches 
(Álvarez-Arroyo et al., 2024). These characteristics present a significant 
challenge for students, who frequently commit errors in learning this 
domain (Chernoff, 2012; He & Chen, 2025; Park & Lee, 2019). In 
particular, probability problems in compound experimental contexts 
may prove more challenging for students due to the construction of more 
complex sample spaces (Batanero et al., 2018; Chernoff & Zazkis, 2011; 
He & Chen, 2025; Landín & Salinas, 2018). For example, the problem of 
removing two balls from an opaque box containing two black and two 
white balls to determine the probability of a black-white pairing (a 
compound experimental context) is more challenging than the problem 
of removing one ball from an opaque box containing two black and two 
white balls to determine the probability of a black ball (a simple 
experimental context). To better solve such problems within complex 
experimental contexts, tree diagrams have been introduced as concep
tual instruments for counting sample spaces (China Ministry of Educa
tion, 2022; Even & Kvatinsky, 2010). Nevertheless, existing research has 
demonstrated that students commit errors when using tree diagrams to 
solve more complex probability problems (Batanero et al., 2018).

To help students overcome errors, teachers must know how to di
agnose student errors, analyze their underlying causes, and design 
appropriate interventions (Font et al., 2024). For preservice 

mathematics teachers (PMTs), diagnosing and analyzing student errors 
offers insight into their conceptual understanding (Font et al., 2024). 
Consequently, it is beneficial for PMTs to develop knowledge about 
identifying errors and developing corrective strategies (Brodie, 2014; 
Font et al., 2024; Korkmaz & Alkan, 2023). However, as Batanero and 
Álvarez-Arroyo (2024, p. 14) have highlighted in a recent retrospective 
review, “there are still very few papers centered on how teachers 
conceive their students’ learning, predict their difficulties and strategies, 
and instructional practices to overcome these problems.” Although 
several studies have investigated how PMTs address student errors, such 
as equiprobability bias, in learning probability (Park & Lee, 2019), to 
our knowledge, none have focused explicitly on how PMTs address 
student errors in solving more challenging probability problems.

This study aimed to examine how PMTs analyze and respond to 
student errors when solving probability problems using tree diagrams. 
This study contributes to the existing literature on how PMTs address 
student errors in learning probability, providing valuable insights into 
preparing PMTs for teaching probability.

2. Literature review and framework

2.1. Student errors in solving probability problems using tree diagrams

Large volumes of empirical research have identified probability as 
challenging for students, with various errors in their learning (e.g., 
Batanero & Chernoff, 2018; Park & Lee, 2019). When calculating the 
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probability of an event mathematically, one constructs the sample space, 
that is, one finds the number of all equal possible outcomes of the 
experiment (m) and finds the number of the outcomes involved in the 
desired event (n), and then concludes a numerical value for the proba
bility based on the formula n/m (Batanero & Díaz, 2007; Bryant & 
Nunes, 2012; He & Chen, 2025). However, students may make errors in 
the above process because they cannot construct sample spaces 
correctly. For example, the experiment of removing a ball from each of 
two boxes, both containing a black ball and a white ball, generates four 
equal possible outcomes, the collection of which is called the sample 
space, namely, {black-white, black-black, white-white, white-black}. 
Based on this sample space, the probability of the event “black-white 
pairing” is 2/4. Unfortunately, some students erroneously construct a 
sample space of {black-white, black-black, white-white} and thus 
believe that the probability of the event “black-white pairing” is 1/3 (He 
& Chen, 2025).

In response to such erroneous reasoning, the use of tree diagrams is 
considered an enlightening and visual tool that enables to prevent stu
dents from making errors in constructing sample spaces (Batanero et al., 
2005; Böcherer-Linder et al., 2018; English, 2005; Landín & Salinas, 
2018; Maher & Ahluwalia, 2014) and improve their attitudes and beliefs 
about probability (Williams & Nisbet, 2014). To illustrate, in addressing 
the problem above, one may decompose the experiment into two steps. 
Initially, it can be determined that there are two equally possible out
comes for the ball removed from one box, allowing for the drawing of 
two branches. The endpoint of each branch is referred to as a leaf node, 
which represents a single outcome within the sample space of the 
experiment of removing a ball from a single box. Subsequently, it is 
determined that there are two equally possible outcomes for the ball 
removed from the other box. Two new branches are then drawn at the 
nodes of each of these two branches, with the two leaf nodes at the end 
of these branches representing the two outcomes of the sample space for 
the experiment of removing a ball from the other box. It is thus hoped 
that students will be able to identify four possible outcomes for the 
experiment of removing two balls based on the entirety of the tree di
agram, thereby avoiding the error of assuming that the probability of the 
event “black-white pairing” is 1/3.

The use of tree diagrams to represent and solve probability problems 
provides students with an enlightening visual tool that elucidates the 
structure of probability and facilitates an understanding of the mathe
matical calculation of probability, and thus promises them to avoid 
resorting to untenable intuitions when solving problems (Aspinwall & 
Shaw, 2000; Batanero & Álvarez-Arroyo, 2024; Böcherer-Linder et al., 
2018; Landín & Salinas, 2018; Maher & Ahluwalia, 2014; Munter, 2014; 
Zahner & Corter, 2010). In contrast to an unorganized list of outcomes, 
using tree diagrams “helps students to easily represent the stages of a 
compound experiment” (Landín & Salinas, 2018, p. 258), thereby 
enabling students to visually and systematically count the sample space 
and to avoid omissions or duplications in enumerating the outcomes.

Nevertheless, they remain vulnerable to errors in using tree diagrams 
if the probability problem becomes more complex (Batanero et al., 
2018). Students may suffer from omissions when drawing a tree dia
gram, thus forgetting to consider drawing branches and leaf nodes 
representing certain outcomes. To illustrate, in the context of removing 
a ball from a box containing two black balls and one white ball, students 
may represent the removal of the black ball and the white ball by 
drawing two branches, failing to recognize that the two branches are not 
equally probable.

Furthermore, students may encounter difficulties in interpreting the 
tree diagram. In the aforementioned context, despite the accurate rep
resentation of a tree diagram, students may not fully understand the 
significance of individual branches and leaf nodes, which can lead to 
errors when calculating the probability of compound events. In partic
ular, when solving problems in which the probabilities of individual 
branches are unequal, for instance, when attempting to solve the 
problem “a shooter has a probability of 0.7 to hit the target and 0.3 to 

fail. What is the probability of hitting the target exactly three times out 
of five shots?” (Sánchez & Landín, 2014, p. 588), students commonly fail 
to recognize that the probabilities of the branches are not equal (Sánchez 
& Landín, 2014).

2.2. Teachers’ knowledge of student errors in learning probability

Following the mathematical knowledge for teaching (MKT) frame
work proposed by Hills et al. (2008), proficient mathematics educators 
must possess both robust subject matter knowledge (SMK) and peda
gogical content knowledge (PCK). It is widely acknowledged that 
“teachers cannot help children learn things they themselves do not un
derstand.” (Ball, 1991, p. 5). If teachers possess erroneous mathematical 
knowledge, they are likely to disseminate these misconceptions to their 
students during instruction, thereby hindering their learning 
(Copur-Gencturk, 2021; Hu et al., 2022).

Moreover, teachers’ PCK also proves to be a significant factor 
influencing the teaching practice of mathematics (Baumert et al., 2010; 
Depaepe et al., 2013). Within the structure of PCK, there is a domain 
known as knowledge of content and students (KCS), which concerns 
teachers’ knowledge of the process of student learning and errors 
encountered, playing an essential role in instructional practices aimed at 
addressing student errors (Greefrath et al., 2022; Hill et al., 2008; 
Pankow et al., 2018). The importance of teachers’ knowledge about 
student errors is well documented. Several studies have highlighted the 
positive impact of teachers’ knowledge of student misconceptions 
(KOSM) on facilitating students’ shifts in misconceptions and enhancing 
conceptual understanding (Hill & Chin, 2018; Sadler et al., 2013).

In light of these perspectives, teachers must possess a robust under
standing of probability and the requisite knowledge to address student 
errors in learning probability (Estrada et al., 2018; Park & Lee, 2019). It 
has been demonstrated that PMTs can identify student errors in solving 
simple probability problems. However, their ability to identify student 
errors diminishes when confronted with more complex or challenging 
problems (Chernoff & Zazkis, 2011; Park & Lee, 2019). Tree diagrams 
are commonly used to solve probability problems within complex and 
challenging experimental contexts. However, to our knowledge, scant 
research has examined the analyses and responses to student errors in 
probability problem-solving using tree diagrams, particularly in the 
context of PMT education.

2.3. Analytical framework

By integrating the perspectives of Peng and Luo (2009) and Son 
(2013), Hu et al. (2022) proposed a framework for examining teachers’ 
analyses of and responses to student errors, as shown in Table 1.

According to this framework, teachers’ analyses of student errors 
encompass three key facets: identifying, interpreting, and evaluating 
errors. The term “identify error” denotes detecting and explicitly 
locating the error. “Interpret error” signifies the elucidation of the 

Table 1 
Framework for examining teachers’ analysis of and responses to student errors 
(Hu et al., 2022).

Aspect Stages or facets Descriptions or classifications

Analysis Identify Articulate student errors.
Interpret Analyze potential causes of the errors.
Evaluate Positive evaluation or negative evaluation.

Responses Mathematical focus Conceptual knowledge or procedural 
knowledge.

Pedagogical actions Specific strategies to address student errors.
Address form Show-tell or give-ask.
Error use Active use, medium use, or rare use.
Communication 
barrier

Over-generalization, Plato-and-the-slave-boy 
approach, return to the basics; Specific to the 
student error.
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underlying causes of the error. Finally, “evaluate error” pertains to 
teachers’ attitudes towards the error.

Teachers’ responses to students’ errors comprise five facets. 

a) Mathematical focus denotes the specific mathematical knowledge 
the teacher prioritizes when addressing students’ errors. This en
compasses both procedural and conceptual knowledge, where the 
former includes formulas, procedures, and other technical details, 
while the latter comprises definitions, connotations, and other 
fundamental concepts.

b) Pedagogical actions refer to the specific teaching strategies teachers 
adopt to correct student errors.

c) Form of address reflects whether teachers’ corrective teaching is 
student-centered or teacher-centered. Categories include “give-ask” 
and “show-tell”. “Give-ask” focuses on student reflection, interac
tion, and discussion, while “show-tell” emphasizes teachers’ expla
nations of errors and demonstrations of correct solutions (Runnalls & 
Hong, 2020).

d) Degree of student error use, which reflects how teachers view errors 
as valuable resources when dealing with student errors, includes 
three categories: active use, medium use, and rare use. Active use 
implies that teachers are concerned with errors as the focus and 
reference of corrective teaching. In contrast, medium use implies 
that teachers only view errors as stepping stones for corrective 
teaching (Hu et al., 2022).

e) A communication barrier refers to the obstacles encountered be
tween teachers and students when communicating about student 
errors. These obstacles can be classified into three categories: over- 
generalization, the Plato-and-the-slave-boy approach, and return to 
the basics. Over-generalization refers to teachers’ proposals of a 
program that is too general and lacks specific activities or tasks. The 
Plato-and-the-slave-boy approach is characterized by the belief of 
teachers that students have temporarily forgotten certain facts or 
procedures that have led to the error. This approach entails the 
teachers’ belief that the student only needs to be helped to recall 
these facts and procedures. “Return to the basics” is characterized by 
a focus on leading students to review basic concepts or principles 
while neglecting to address the problem at hand. Furthermore, to 
account for responses that effectively address the student’s error 
without exhibiting the defined communication barriers, a category 
labeled “specific to student error” was included in our coding 
scheme, following the methodological approach of Hu et al. (2022).

2.4. The present study

Competent mathematics teachers must be able to analyze students’ 
problem-solving thoughts and reasoning processes and provide effective 
interventions accordingly (Bas-Ader et al., 2024; Scheiner & Montes, 
2024). Without well-trained teachers, the teaching of probability in 
schools would struggle to improve (Huerta, 2018). However, “research 
in teacher education related to probabilistic thinking and reasoning has 
been identified as scarce” (Ingram, 2024, p. 1). The present study 
examined PMTs’ knowledge about addressing student errors in solving 
probability problems through their written responses to a hypothetical 
student work. We proposed two research questions. 

(1) How do PMTs analyze student errors in solving probability 
problems using tree diagrams?

(2) How do PMTs respond to student errors in solving probability 
problems using tree diagrams?

3. Methods

3.1. Participants

A total of 41 master’s level students in mathematics education, 
comprising 29 females and 12 males, participated in this study. 
Following the program of the host university, the training cycle for PMTs 
at the master’s level is two years. During the first year, they engage in a 
series of courses related to mathematics education, including Design and 
Practice of Mathematics Teaching, Analysis of Mathematics Curriculum 
Standards and Textbooks, Mathematics Education Psychology, and 
Research Methodology in Mathematics Education. Additionally, they 
undertake a one-semester internship at a middle or high school and 
complete a thesis in their second year. The participants involved in this 
study had completed all the requisite first-year courses in the program 
but had not yet commenced their internships. Specifically, prior to 
participating in this study, they had systematically studied Probability 
Theory as part of their undergraduate program and completed a one- 
year internship at a middle or high school. During their master’s pro
gram, they have learned about probability content for elementary, 
middle and high school levels through the Analysis of Mathematics 
Curriculum Standards and Textbooks course; theoretical knowledge 
related to the psychological aspects of mathematics learning through the 
Mathematics Education Psychology course; and theoretical and practical 
methodologies for developing lesson plans through the Design and 
Practice of Mathematics Teaching course.

3.2. Materials

We presented participants with the task of solving a probability 
problem using a tree diagram and a hypothetical student work. We 
asked them to analyze the errors in the student’s solution and provide 
feasible pedagogical strategies to address these errors. This context for 
solving probability problems using tree diagrams is familiar in middle 
school probability classes (China Ministry of Education, 2022). The task 
and hypothetical student work are as follows.

Shu is working on the following problem:
There are three opaque boxes: A, B, and C. Box A contains one red 

ball, one yellow ball, and one blue ball; box B contains two red balls and 
one yellow ball, and box C contains one red ball and one blue ball, all of 
which are identical except for their color. With your eyes closed, remove 
one ball from boxes A, B, and C and find the probability of the event “the 
three balls removed contain at least one red ball” using the tree diagram 
method. 

Shu’s reasoning is as follows:
I solved the problem in two steps. I drew the tree diagram in the first 

step, as shown below. In the second step, I found that there are eight 
possible combinations of the three balls removed: {Red, Red, Red; Red, 
Red, Blue; Red, Red, Yellow; Red, Yellow, Blue; Red, Yellow, Yellow; 
Red, Blue, Blue; Yellow, Blue, Blue; Blue, Yellow, Yellow}. The event 
“the three balls removed contain at least one red ball” contains six 
combinations, as underlined. Therefore, the probability of this event 
occurring is 6/8.  
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Participants were asked to answer three questions. 

(1) What do you think the answer to this question is?
(2) Do you think Shu’s reasoning is correct? If not, please describe 

the error(s) reflected in his reasoning and explain why.
(3) What teaching strategies would you take to help him correct his 

error(s)?1

Shu’s errors are reflected in two aspects. The first error (Error 1) is 
reflected in the first step, where the tree diagram he drew is incorrect. 
Given that there are two red balls in box B, the tree diagram should 
represent the probability of the red ball being removed as 2/3. This is 
typically achieved in two different forms. One approach is to draw three 
branches to illustrate that the red ball (which might be labeled Red-B1), 
the other red ball (which might be labeled Red-B2), and the yellow ball 
have an equal chance of being removed. Alternatively, the branch of the 
red ball can be explicitly labeled as having a probability of 2/3, allowing 
the product law of probability to be applied. The former approach is 
suitable for Chinese middle school students who have not been formally 
introduced to the concept of product law of probability.

The second error (Error 2) is reflected in the fact that, even if we 
assume that his first step was correct, he made an error in enumerating 
the possible combinations of the three balls removed according to the 
tree diagram. In other words, he constructed an incorrect sample space. 
According to the tree diagram he drew, the sample space should 
comprise 12 outcomes, each with an equal probability, rather than 
combining the four equal outcomes of “Red-A, Red-B1, Blue-C″, “Red-A, 
Red-B2, Blue-C″, “Blue-A, Red-B1, Red-C″, and “Blue-A, Red-B2, Red-C″ 
into a single outcome designated as “Red, Red, Blue.” In a correct tree 
diagram, there are 18 possible combinations of the three balls removed. 
Thus, the sample space includes 18 outcomes of {Red-A, Red-B1, Red-C; 
Red-A, Red-B1, Blue-C; Red-A, Red-B2, Red-C; Red-A, Red-B2, Blue-C; 
Red-A, Yellow-B, Red-C; Red-A, Yellow-B, Blue-C; Yellow-A, Red-B1, 
Red-C; Yellow-A, Red-B1, Blue-C; Yellow-A, Red-B2, Red-C; Yellow-A, 
Red-B2, Blue-C; Yellow-A, Yellow-B, Red-C; Yellow-A, Yellow-B, Blue- 
C; Blue-A, Red-B1, Red-C; Blue-A, Red-B1, Blue-C; Blue-A, Red-B2, 
Red-C; Blue-A, Red-B2, Blue-C; Blue-A, Yellow-B, Red-C; Blue-A, Yel
low-B, Blue-C}, thus the probability of the desired event is 16/18.

3.3. Data collection

The researcher informed the participants that the purpose of this 
investigation was to examine preservice teachers’ pedagogical knowl
edge, and all participants provided written consent to participate in this 
investigation. Data were collected at the end of the semester when the 
participants had completed their first year of the training program. The 
participants were invited to complete a coursework assessment to 
evaluate the PMTs’ PCK during a regular class lasting 60 min. Accord
ingly, the data analyzed in this study are the written responses provided 
by the participants. To collect as much data as possible, the researchers 
provided participants with sufficient answer sheets and encouraged 
them to use written words, illustrations, or other forms to express their 
thoughts fully. According to post-analysis, the average length of the 
participants’ written responses exceeded 600 words. Pseudonyms were 
used when quoting participants’ written responses.

3.4. Coding

Following the established analytical framework, four researchers 
coded the participants’ written responses through an iterative review 
process. In this process, the four coders initially coded independently, 
revisiting the definitions of the coding categories whenever discrep
ancies emerged and discussing these discrepancies in depth until a 
consensus was reached (Syed & Nelson, 2015). In this study, the four 
coders examined the analytical framework in detail and underwent 
training on the coding criteria before commencing their work. They then 
confirmed that their understanding of the framework and criteria was 
consistent. During the coding process, approximately 10 % of their 
initial independent coding revealed discrepancies. However, after dis
cussions and iterative reviews, these discrepancies were resolved, and a 
consensus was finally reached.

The first question was designed to examine whether the PMTs could 
solve the problem. It was coded as 1 for a correct response by the 
participant and 0 for an incorrect response.

The second question was designed to examine how PMTs analyze 
student errors, categorized into three distinct facets. The identification 
of errors was readily apparent from the written responses. The inter
pretation of errors was derived from an iterative qualitative analysis of 
the written responses related to specific errors.

The coding of PMTs’ interpretations for Error 1 included three cat
egories: a) The interpretations provided were overgeneralized (Inter
pretation 1); b) It is highlighted that Shu did not consider the equal 
probability of the three balls in box B being removed, and incorrectly 
assumed the three possible outcomes, namely, {Red-A, Red-B, Yellow}, 
to be {Red, Yellow}, leading to a flawed tree diagram (Interpretation 2); 
and c) It is acceptable that Shu drew the tree diagram with the branches 
of box B in two, but he did not explicitly label the probability of the red 
ball being removed as 2/3, resulting in an incorrect answer (Interpre
tation 3).

The coding of the PMTs’ interpretations for Error 2 included three 
categories: a) The interpretations provided were overgeneralized 
(Interpretation 1); b) Proposing the correct solution to be used as an 
interpretation (Interpretation 4); and c) Suggesting that Shu did not take 
into account the equiprobability of the individual outcomes when con
structing the sample space, and incorrectly treated some different out
comes as a single one (Interpretation 5). Concerning PMTs’ evaluation of 
student errors, a similar approach was employed to that used by Hu et al. 
(2022), with the data coded into three categories: “positive,” “negative,” 
and “half-half.”

The third question was devised to examine how PMTs respond to 
student errors, coded from five distinct facets. Following previous 
research (Runnalls & Hong, 2020), the mathematical focus was classi
fied as “conceptual knowledge,” “procedural knowledge,” or “both.” 
Specifically, if the relevant concepts pertinent to the problem were 
focused upon, including probability, sample space, and so forth, then it 

1 It is noteworthy that the design of the third question implicitly suggests that 
error(s) exist(s) in the student’s reasoning presented in the second question. We 
acknowledge that this could potentially influence participants’ responses to the 
second question, as it may prime them to look for an error. However, this design 
was intentional and aligned with the study’s objective, which focuses not on the 
detection of errors per se, but on the analysis and response to errors once they 
are identified. In authentic teaching scenarios, teachers are typically already 
aware that a student’s answer is incorrect before devising an instructional 
response. Thus, the task sequence mirrors a realistic pedagogical situation 
where the teacher’s goal is to understand and address a known student diffi
culty. The primary focus of our analysis was therefore on the depth and quality 
of the PMTs’ error interpretation and their proposed teaching strategies, rather 
than on the simple act of error detection.
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was coded as a focus on conceptual knowledge. Conversely, if the pro
cedures, steps, and formulas necessary to solve the problem were the 
focus, then it was coded as a focus on procedural knowledge. Finally, if 
both conceptual and procedural knowledge were focused upon, it was 
double-coded as “both.” The pedagogical actions were associated with 
specific errors. Based on an iterative analysis of the written responses, 
five activities were identified: a) The teacher introduces students to 
relevant knowledge such as probability and the sample spaces but for
gets to solve the problem at hand, which can be summarized as 
“reviewing foundational knowledge” (Action 1); b) The teacher presents 
or clarifies the solution to the problem in certain manners and asks 
students to practice similar problems, which can be summarized as 
“clarifying the solutions” (Action 2); c) The teacher traces students’ 
thoughts through a chain of questions, analyses the causes of errors and 
guides students to correct them, which can be summarized as “instruc
tion through question chains” (Action 3); d) The teacher encourages 
students to engage in reflection and discussion with their peers to 
identify and correct errors, which can be summarized as “promoting 
reflection and discussion” (Action 4); e) The teacher provides students 
with the opportunity to engage in experimentation and to gain insight 
into probability through the collection and analysis of data, which can 
be summarized as “encouraging students to experiment” (Action 5). 
Both Action 1 and Action 2 fall within the pedagogical strategies of 
direct teaching or corrective feedback. The form of address was coded 
into three categories: “show-tell,” “give-ask,” or “both.” Communication 
barriers were categorized into four types: over-generalization, the 
Plato-and-the-slave-boy approach, returning to basics, and specific to 
student error.

4. Results

4.1. PMTs’ analysis of student errors

We first report in passing that all PMTs successfully solved this 
problem, demonstrating their robust SMK. Table 2 provides a detailed 
analysis of PMTs for the two errors, including their identification, 
interpretation, and evaluation.

Identify errors. Forty participants (98 %) identified Error 1, 
whereas only 25 (61 %) identified Error 2. Further analysis demon
strated that all PMTs identified at least one error, with 17 participants 
(41 %) identifying one error and 24 (59 %) identifying two errors. It is 
noteworthy that PMTs appear less effective at identifying error 2, which 

may be because some participants did not explicitly state the error 
despite being aware of it. This will be explained later.

Interpret errors. Concerning Error 1, 35 participants (85 %) inter
preted it as Interpretation 2. This interpretation assumes that Shu did 
not consider the equal probability of the three balls in box B being 
removed, thus leading to a flawed tree diagram. Four participants (10 
%) interpreted it as Interpretation 3. This interpretation assumes that it 
is acceptable for Shu to draw the tree diagram with the branches of box B 
in two, but that he did not explicitly label the probability of the red ball 
being removed as 2/3. Consequently, an incorrect answer resulted. Two 
participants (5 %) provided overgeneralized interpretations (Interpre
tation 1). As can be observed, most participants could provide concrete 
and sensible interpretations for Error 1, which can be classified as either 
Interpretation 2 or Interpretation 3. In the case of Error 2, 22 partici
pants (54 %) interpreted it as Interpretation 5, suggesting that Shu had 
not taken into account the equiprobability of the individual outcomes 
when constructing the sample space and had incorrectly treated some 
different outcomes as a single one. 13 participants (32 %) interpreted it 
as Interpretation 4, proposing the correct solution as an interpretation. 
The remaining 3 participants (7 %) provided overgeneralized explana
tions (Interpretation 1).

Notably, the written responses yielded explicit statements from most 
participants regarding the interpretation of Error 2. This suggests that 
these participants identified the error but did not explicitly indicate it in 
the response script. The two errors occurred in sequence during the 
problem-solving process, resulting in a chain reaction whereby the 
appearance of Error 1 affected the subsequent problem-solving pro
cedure. Some participants may have overlooked the potential errors that 
emerged after Error 1 when reporting the errors they identified. To 
illustrate, Jingwen interpreted that, “Let us assume that the tree diagram 
was correctly drawn, but that such outcomes as ‘Red, Yellow, Red’ and 
‘Yellow, Red, Red’ were treated as one. This remains an unsatisfactory 
solution.” Subsequently, she elucidated, “He had already committed an 
error (Error 1) in drawing the tree diagram. To be precise, he was un
aware that there were three equally probable outcomes of the ball being 
removed from Box B. Had he not made these errors, a total of 18 possible 
outcomes would have been enumerated, 16 of which consist of the 
desired event. Therefore, the correct answer is 16/18.”

Furthermore, 38 participants (93 %) provided two interpretations, 
while only three (7 %) provided one. This again demonstrates that some 
participants, while identifying Error 2, did not explicitly indicate it.

Evaluate errors. In the final step of examining the PMTs’ analysis of 
student errors, we attempted to capture opinions or information 
regarding the evaluation aspects of the errors from the participants’ 
response scripts. Unfortunately, 39 participants (95 %), the vast ma
jority, did not explicitly provide their evaluations of the errors.

4.2. PMTs’ responses to student errors

Table 3 presents PMTs’ responses to errors.
Mathematical focus. First, 23 participants (56 %) preferred to 

correct errors by reinforcing students’ procedural knowledge. To illus
trate, Jing proposed that “the first step should be to label the balls. Thus, 
the balls in box A could be labeled Red-A, Yellow-A, and Blue-A; the 
balls in box B could be labeled Red-B1, Red-B2, and Yellow-B; and the 
balls in box C could be labeled Red-C and Blue-C. Subsequently, the 
students were directed to redraw the tree diagram, which would reveal 
the inaccuracy of their previous approach.” It appears that her primary 
concern was to instruct the students on how to follow the specified 
procedure to solve the problem, rather than to guide them in recognizing 
the necessity for labeling and the underlying concepts involved.

Second, 17 participants (42 %) were concerned with reinforcing 
students’ conceptual and procedural knowledge to correct their errors in 
problem-solving. For instance, Qingwen proposed that “educators 
should emphasize to students the importance of ensuring that each 
outcome in the sample space is equiprobable when determining the 

Table 2 
The participants’ analysis of the two errors.

Facet Classification N (%)

Error 1 Error 2

Identify Identified 40 (98 
%)

25 (61 
%)

No errors were identified 0 (0 %)
One error was identified 17 (41 %)
Two errors were identified 24 (59 %)

Interpret Interpretation types Interpretation 1 2 (5 %) 3 (7 %)
Interpretation 2 35 (85 

%)
/

Interpretation 3 4 (10 %) /
Interpretation 4 / 13 (32 

%)
Interpretation 5 / 22 (54 

%)
Number of 
interpretations

No interpretation 0 (0 %)
One interpretation 3 (7 %)
Two 
interpretations

38 (93 %)

Evaluate None 39 (95 %)
Negative 0 (0 %)
Half-half 2 (5 %)
Positive 0 (0 %)
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sample space. To address errors effectively, it is essential to undertake 
two key steps. Initially, it is vital to facilitate reflection on whether the 
ball removed from box B has only two equally probable outcomes, as 
illustrated in the tree diagram created by Shu. This step warrants 
particular emphasis, as it is only when students can correctly enumerate 
the sample space, confirming that all listed outcomes are equally 
probable, that they can accurately calculate the probability. Subse
quently, the students should be guided to label the balls and draw a tree 
diagram that represents the experiment in an organized manner.”

Third, a mere one participant (2 %) identified the reinforcement of 
students’ conceptual knowledge as a means of correcting errors.

Pedagogical actions. First, most PMTs preferred to respond to stu
dent errors with pedagogical actions, such as direct teaching or 
corrective feedback. The most frequently reported action was Action 2, 
“clarifying the solutions,” which occurred 33 times (37 %) out of 89 
valid records. In addition, Action 1, “reviewing foundational knowl
edge,” was observed on 18 occasions (20 %).

Second, Action 5, “encouraging students to experiment,” occurred 19 
times (21 %). For example, Yong suggested, “I would simulate the 
context by giving students the box and the balls and then asking them to 
conduct multiple experiments to gain experience. In particular, I would 
allow them to experience that the red ball is removed from box B more 
frequently than the yellow ball, thus noticing that the tree diagram Shu 
drew is wrong. In addition, I would consider resorting to software to 
develop a simulated application of this context to help the students 
notice Shu’s errors through computer-simulated experiments.”

Third, Action 4, “promoting reflection and discussion,” occurred 11 
times (12 %). For example, Feiyang suggested, “In response to the first 
error, I would ask him, ‘If there are ten red balls and one yellow ball in 
box B, and a ball is randomly removed from the box, what is the prob
ability that the removed ball is a red one?’ I think the disparity in the 
number of red and yellow balls could make the students think differ
ently. For the second error, I’d suggest playing a game of tossing two 
coins and then asking the students what the probability of a heads-tails 
pair is. If we follow Shu’s logic, the answer would be 1/3. I’d then steer 
the discussion towards whether there’s a difference between the head- 
tail and tail-head outcomes. Finally, I’d like to remind them that ‘Red, 
Red, Yellow’ and ‘Red, Yellow, Red’ are not the same outcome.”

Fourth, Action 3, “instruction through question chains”, was 

mentioned the least, at eight times (9 %). Fifth, in terms of the number of 
activities proposed, all 41 participants (100 %) proposed at least one 
action, 32 participants (78 %) proposed two actions, 11 participants (27 
%) proposed three actions, and 5 participants (12 %) proposed four 
actions.

Address form. First, 26 (63 %), the majority, of the participants 
adopted both the “show-tell” and “give-ask” forms. Second, 15 partici
pants (37 %) adopted the “give-ask” as the sole form. Third, none of the 
participants adopted the “show-tell” as the sole form.

Errors use. First, 18 participants (44 %) viewed student errors 
positively, treated them as the focus of instructional interventions, and 
taught against them (active use). Second, 22 participants (54 %) viewed 
student errors as a stepping stone (medium use). Third, only one 
participant (2 %) completely disregards student errors (rare use).

Communication barrier. First, 12 participants (30 %) revealed the 
communication barrier of over-generalization when responding to stu
dent errors. Second, three participants (7 %) revealed the communica
tion barrier of returning to the basics when responding to student errors. 
Third, the participants’ response scripts did not identify the communi
cation barrier associated with the Plato-and-the-slave-boy approach. 
Fourth, 26 (63 %), the majority of the participants did not encounter a 
communication barrier when responding to student errors.

5. Conclusion, discussion, and implications

We begin with answers to the research questions, followed by a 
discussion of the findings, implications, and contributions of this study.

5.1. How do PMTs analyze student errors in solving probability problems 
using tree diagrams?

The findings of this study demonstrated that, although some partic
ipants did not explicitly articulate Error 2, they could identify the error 
through the lens of the subsequent interpretation of the error. Therefore, 
PMTs performed well overall in identifying student errors. However, we 
must acknowledge that there may be a discrepancy between the iden
tification of student errors by PMTs and their explicit articulation of 
these errors. The phenomenon may be attributed to the chain effect of 
errors, whereby initial errors lead to a subsequent series of errors. Some 
participants may have focused solely on the initial error, thereby over
looking subsequent errors when representing student errors. This 
finding reflects their lack of awareness of categorizing and recording 
errors. It is therefore recommended that examples of analyzing students’ 
errors be included in the PMTs’ training program, with opportunities 
provided for them to practice analyzing student errors in various con
texts. Particular guidance should be provided on the accuracy and 
completeness of error identification, as well as on explicitly identifying, 
articulating, and communicating students’ errors.

The findings of this study indicated that most participants could 
accurately interpret the underlying causes of Error 1. The participants 
proposed that the student failed to clarify that the chances of the red and 
yellow balls being removed from box B were not equally probable. 
Consequently, they recommended that either a new branch be added or 
that the probabilities of the two branches be labeled when drawing the 
tree diagram (Interpretation 2 and Interpretation 3). Over half of the 
participants could provide concrete interpretations of the causes of Error 
2 (Interpretation 5). They argued that the students did not understand 
that all the outcomes in the sample space needed to be equally probable. 
The capacity of the PMTs to accurately interpret student errors may be 
associated with their robust SMK. This might be evidenced by the fact 
that they were all able to solve the problem correctly. Furthermore, the 
results of this study indicated that most participants provided more than 
one interpretation. The causes of student errors in problem-solving can 
be multifaceted, each suggesting different pedagogical implications 
(Shaughnessy et al., 2021). Once again, the capacity of PMTs to offer 
multiple interpretations of student errors reflected their proficiency in 

Table 3 
The participants’ analysis of the two errors.

Facet Classification N (%)

Mathematical focus Procedural 23 (56 %)
Conceptual 1 (2 %)
Both 17 (42 %)

Pedagogical actionsa Action types Action 1 18 (20 %)
Action 2 33 (37 %)
Action 3 8 (9 %)
Action 4 11 (12 %)
Action 5 19 (21 %)

Number of actions One action 41 (100 %)
Two actions 32 (78 %)
Three actions 11 (27 %)
Four actions 5 (12 %)

Address form Show-tell 15 (37 %)
Give-ask 0 (0 %)
Both 26 (63 %)

Errors use Rare use 1 (2 %)
Medium use 22 (54 %)
Active use 18 (44 %)

Communication barrier Over-generalization 12 (30 %)
Plato-and-the-slave-boy 0 (0 %)
Return to the basics 3 (7 %)
Specific to student error 26 (63 %)

a Since some participants proposed multiple actions, 89 valid records were 
captured. It should be noted that when counting the percentage of actions from 1 
to 5, the denominator is no longer the number of participants but the total 
number of records.

S. He                                                                                                                                                                                                                                               Teaching and Teacher Education 168 (2025) 105250 

6 



analyzing errors from a student perspective.
The findings of this study indicated that the overwhelming majority 

of PMTs did not explicitly evaluate student errors. This may be because 
we did not explicitly request that participants express their attitudes 
toward student errors. We speculate that if the participants had been 
explicitly asked to express their attitudes toward student errors, they 
might have expressed various opinions, including some positive ones. In 
other words, we may have underestimated the proportion of PMTs with 
positive attitudes towards student errors. However, this finding also 
precisely reflected the lack of awareness of proactively evaluating stu
dent errors. This finding is consistent with existing research indicating 
that some teachers may perceive errors as an indication of failure, 
leading to a reluctance to confront student errors or a preference for 
focusing on correcting them rather than utilizing them as valuable 
learning opportunities (Shaughnessy et al., 2021). This phenomenon of 
PMTs’ lack of awareness in evaluating student errors underscores the 
necessity for enhancing their perception of the significance of student 
errors and their skills in offering constructive feedback. Teacher training 
programs must, therefore, place greater emphasis on these aspects. 
Moreover, teacher educators must encourage PMTs to engage in 
reflective practice concerning student errors, in addition to identifying 
and interpreting them. This should be done to promote a positive atti
tude towards such errors. A positive evaluation of student errors has 
been demonstrated to promote learning and foster self-confidence. 
When teachers adopt a positive and encouraging approach to evalu
ating student errors, students perceive the teacher’s emotional support, 
which in turn enhances their motivation, engagement, and persistence 
(Heinze et al., 2012; Käfer et al., 2019; Soncini et al., 2021). Research 
has demonstrated that teachers’ positive attitudes towards student er
rors, such as respect, acceptance, and tolerance, can reduce students’ 
anxiety or fear of making errors. This, in turn, can enhance risk-taking 
attitudes and persistence in problem-solving (Tulis, 2013). Teachers’ 
negative and problematic attitudes toward student errors can hinder the 
creation of a supportive learning environment for their students 
(Leighton et al., 2022). In light of this, it is hypothesized that teachers’ 
friendly, inclusive, and positive view of student errors can facilitate the 
formation of learning environments that encourage creativity and 
exploration and facilitate meaningful reflection on the process of mak
ing errors. It is, therefore, essential to provide PMTs guidance to pro
mote the development of an optimistic, inclusive, and constructive 
attitude towards errors (Hu et al., 2022).

5.2. How do PMTs respond to student errors in solving probability 
problems using tree diagrams?

This study’s findings indicated that most participants preferred to 
address student errors by reinforcing procedural knowledge, suggesting 
a tendency to prioritize the acquisition of correct procedures over the 
development of conceptual understanding. This finding is consistent 
with existing research indicating that teachers prioritize enhancing 
procedural knowledge when addressing student errors (Runnalls & 
Hong, 2020; Son, 2013; Stohl, 2005). While procedural knowledge is 
essential for solving specific problems, conceptual knowledge provides 
students with a foundation for understanding the principles and logic 
behind the problems. The resolution of probability problems cannot be 
accomplished by merely applying algorithms and formulas; rather, it 
necessitates establishing a coherent structure of probabilistic thinking 
(Erbas & Ocal, 2022). Prior research has shown that a dual pedagogical 
approach, which emphasizes both procedural and conceptual knowl
edge, enhances students’ capacity to comprehend mathematical con
cepts and refine their problem-solving skills (Runnalls & Hong, 2020). It 
is encouraging to observe that some participants demonstrated an 
awareness of the significance of conceptual knowledge and adopted a 
more comprehensive and balanced approach to correcting the errors. 
This approach reflected a more holistic perception of the nature of stu
dent errors and a recognition of the importance of fostering a deeper 

conceptual understanding of mathematical concepts among students. 
This dual focus is crucial because it involves not only solving the 
probability problem with the help of a tree diagram but also applying 
probabilistic thinking and the underlying principles that underpin the 
construction of this tree diagram.

The findings of this study indicated that “reviewing foundational 
knowledge” and “clarifying the solutions” dominated all the proposed 
teaching actions, suggesting that PMTs favor presenting students with 
clear explanations and paradigms when correcting errors. This phe
nomenon may be related to traditional practices in Chinese mathematics 
education that emphasize basic knowledge, problem-solving solutions, 
and practice (Sun, 2011; Tang et al., 2013). Alternatively, it may be 
linked to the pedagogical tradition in Chinese mathematics education 
that emphasizes using exemplary lessons (essentially a standard, excel
lent example) to enhance teaching practice (Huang et al., 2013; Niu 
et al., 2017). Viewing these two teaching activities as conservative or 
backward would be inappropriate. Indeed, recent studies have indicated 
that the absence of substantial analysis of the concepts or principles 
behind errors in correcting students’ errors may limit the opportunities 
for students to learn from their errors (Alvidrez et al., 2024).

However, this study observed that PMTs placed less emphasis on 
“instruction through question chains” (Action 3) and “promoting 
reflection and discussion” (Action 4), suggesting that PMTs may have 
relied too heavily on reinforcing the basics or providing exemplary 
patterns (so-called standard reasoning) while neglecting the positive 
effects of other, more inquiry-based, instructional approaches for cor
recting students’ errors. Only when teachers design activities that pro
vide opportunities for students to engage in thinking and reflection can 
they become active learners (Ahuja, 2018). It is noteworthy that 
“encouraging students to experiment” (Action 5) is not a frequently 
mentioned approach; however, it is encouraging as it has been demon
strated to have a positive effect on the visual perception of probability in 
students (Nilsson et al., 2018; Paparistodemou & Meletiou-Mavrotheris, 
2008; Park & Lee, 2019). China’s most recent mathematics curriculum 
standards explicitly recommend that teachers integrate and coordinate 
multiple pedagogical approaches, including direct and non-direct 
teaching, to promote students’ mathematics learning (China Ministry 
of Education, 2022). The study revealed that some participants proposed 
various teaching activities, indicating that PMTs are flexible in 
addressing student errors and are conscious of integrating diverse 
pedagogical approaches to meet students’ needs and address multiple 
errors. This finding is encouraging as it suggests that PMTs are aware of 
the need to develop diverse pedagogical strategies required for effective 
mathematics teaching. However, the relatively limited number of par
ticipants who suggested three to four activities indicates that there is 
scope for further expansion of their repertoire of pedagogical strategies. 
Therefore, training programs should provide PMTs with practical op
portunities to apply these approaches in their teaching, thereby enabling 
them to gain exposure to and utilize a more diverse range of 
student-centered and inquiry-based teaching methods.

The findings of this study revealed that the combination of “show- 
tell” and “give-ask” was the most popular among PMTs in terms of 
address form. This reflects their dual emphasis on lecturing and asking 
questions, as well as their awareness of the importance of interaction 
between the teacher and students in corrective teaching. Some partici
pants employed the unique address form of “give-ask,” however, it is 
noteworthy that none of the participants utilized the unique address 
form of “show-tell,” which may suggest that they recognize the limita
tions of the “show-tell” approach and the necessity to incorporate 
questioning and interaction into corrective teaching. The traditional 
lecturing approach may effectively correct students’ errors immediately, 
but it has been demonstrated to have limitations in developing students’ 
capacity for deep understanding, reflection, and critical thinking. Prior 
research has shown that traditional lecturing has a constrained impact 
on correcting students’ errors. Conversely, indirect teaching approaches 
that prioritize student-centeredness and facilitate student interaction 
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have been identified as more effective in promoting students’ learning 
(Madu & Orji, 2015; Shaughnessy et al., 2021; Taslidere & Yıldırım, 
2023).

This study’s findings indicated that most participants did not ignore 
students’ errors, which is encouraging and reflects PMTs’ attention to 
the resources of errors. Errors should not be viewed negatively but 
rather as an essential resource for establishing students’ mathematical 
comprehension (Ahuja, 2018; Alvidrez et al., 2024; Font et al., 2024; Hu 
et al., 2022; Shaughnessy et al., 2021; Stockero et al., 2020; Tan Sisman 
& Aksu, 2016), and can serve as guidelines for teachers to adapt in
struction (Tulis, 2013). It was observed that some participants regarded 
student errors as the focus of instructional interventions (active use), 
indicating a readiness to view errors as a potential avenue for student 
learning and a foundation for corrective teaching. However, while not 
ignoring student errors, most participants only used them as a stepping 
stone (moderate use), indicating that PMTs may not fully recognize the 
potential of errors to facilitate conceptual comprehension. This finding 
is consistent with previous research, which stated that teachers do not 
favor using errors to promote student learning in many mathematics 
classrooms worldwide. Indeed, such errors are often viewed as a nega
tive, embarrassing, or shameful aspect of the learning process (Alvidrez 
et al., 2024; Bray, 2011; Tulis, 2013). Therefore, teacher educators must 
facilitate a deeper comprehension of the effective utilization of errors 
among PMTs.

This study’s findings indicated that most participants did not exhibit 
significant communication barriers in their responses to student errors. 
Another encouraging finding is that no such communication barrier as 
the Plato-and-the-slave-boy approach was captured from the partici
pants’ written responses. This suggests that PMTs can consciously pur
sue meaningful approaches to mathematical learning. However, it was 
observed that a proportion of participants exhibited a communication 
barrier of over-generalization, as evidenced by the provision of vague or 
overly generalized interventions, which lacked targeted specificity. This 
indicates the need for PMTs to enhance their capacity to furnish more 
detailed and tailored instructional responses to students, thus enabling 
the effective navigation of the nuances of student errors (Ahuja, 2018). 
Furthermore, a few participants demonstrated the communication bar
rier of “return to the basics,” indicating an excessive focus on founda
tional knowledge without addressing the balance between reviewing 
foundational knowledge and solving the problem. Focusing solely on the 
basics may result in students acquiring knowledge that lacks practical 
significance and, therefore, lacks robustness.

To summarize, this study has three main contributions. First, as 
recent research has proposed, there is a paucity of studies on teachers’ 
knowledge of students’ probabilistic thinking, reasoning, and learning 
(Batanero & Álvarez-Arroyo, 2024; Ingram, 2024). The present study 
concentrated on the analysis and response of PMTs to the errors that 
occur when students utilize tree diagrams to solve probability problems 
in compound experiment contexts, specifically those with more complex 
constraints. The findings of this study contribute to the existing body of 
knowledge in this field, providing insights into the knowledge of PMTs 
regarding learning and teaching probability. Second, this study exam
ined PMTs’ knowledge of analyzing and responding to student errors in 
detail through a comprehensive framework that considers multiple 
facets simultaneously. Thus, the findings advance the understanding of 
teachers’ PCK regarding this specific topic and provide insight into 
developing PMS’s PCK. These insights provide a foundation for future 
research to further explore PMTs’ PCK. Third, this study informs the 
design and improvement of training programs for PMTs, such as incor
porating error correction activities to enhance their knowledge of stu
dent learning in mathematics.

6. Limitations and further research

This study has two limitations. The first is that the sample size was 
small; thus, when interpreting the results, it cannot be overgeneralized. 

The second is that the study relies solely on participants’ written re
sponses, which may not fully reflect their reasoning and thinking. For 
example, the present study has not captured enough information con
cerning the participants’ evaluation of student errors. If they had been 
explicitly requested to express their attitudes, there might have been 
richer data to describe the error evaluation facet better.

Furthermore, it is possible that additional information might have 
been captured had further interviews been conducted with them. Future 
studies may consider expanding the sample size and adopting methods, 
such as interviews and classroom observations, to gain a better under
standing of PMTs’ approaches to addressing student errors. In addition, 
the present study focused on teachers’ PCK. Future research may further 
explore the relationship between PMTs’ SMK and PCK.
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