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This case study examined the knowledge of preservice mathematics teachers (PMTs) in analyzing and responding
to student errors. Participants were 41 master’s level PMTs who had completed foundational mathematics ed-
ucation courses. They evaluated hypothetical student work solving a compound probability problem using a tree
diagram. Through fine-grained qualitative analysis of written responses, researchers found PMTs proficiently
identified and interpreted errors, employing both “show-tell” and “give-ask” response strategies. Key weaknesses

included over-emphasis on procedures, low active utilization of errors, and communication barriers. The study
highlights implications for enhancing PMTs’ error-handling skills in teacher education and improving probability

teaching.

1. Introduction

Probability is a branch of mathematics that addresses topics such as
random events and uncertainty (Korkmaz & Alkan, 2023), and its
reasoning structure differs from that of other mathematical branches
(Alvarez—Arroyo et al., 2024). These characteristics present a significant
challenge for students, who frequently commit errors in learning this
domain (Chernoff, 2012; He & Chen, 2025; Park & Lee, 2019). In
particular, probability problems in compound experimental contexts
may prove more challenging for students due to the construction of more
complex sample spaces (Batanero et al., 2018; Chernoff & Zazkis, 2011;
He & Chen, 2025; Landin & Salinas, 2018). For example, the problem of
removing two balls from an opaque box containing two black and two
white balls to determine the probability of a black-white pairing (a
compound experimental context) is more challenging than the problem
of removing one ball from an opaque box containing two black and two
white balls to determine the probability of a black ball (a simple
experimental context). To better solve such problems within complex
experimental contexts, tree diagrams have been introduced as concep-
tual instruments for counting sample spaces (China Ministry of Educa-
tion, 2022; Even & Kvatinsky, 2010). Nevertheless, existing research has
demonstrated that students commit errors when using tree diagrams to
solve more complex probability problems (Batanero et al., 2018).

To help students overcome errors, teachers must know how to di-
agnose student errors, analyze their underlying causes, and design
appropriate interventions (Font et al.,, 2024). For preservice
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mathematics teachers (PMTs), diagnosing and analyzing student errors
offers insight into their conceptual understanding (Font et al., 2024).
Consequently, it is beneficial for PMTs to develop knowledge about
identifying errors and developing corrective strategies (Brodie, 2014;
Font et al., 2024; Korkmaz & Alkan, 2023). However, as Batanero and
Alvarez-Arroyo (2024, p. 14) have highlighted in a recent retrospective
review, “there are still very few papers centered on how teachers
conceive their students’ learning, predict their difficulties and strategies,
and instructional practices to overcome these problems.” Although
several studies have investigated how PMTs address student errors, such
as equiprobability bias, in learning probability (Park & Lee, 2019), to
our knowledge, none have focused explicitly on how PMTs address
student errors in solving more challenging probability problems.

This study aimed to examine how PMTs analyze and respond to
student errors when solving probability problems using tree diagrams.
This study contributes to the existing literature on how PMTs address
student errors in learning probability, providing valuable insights into
preparing PMTs for teaching probability.

2. Literature review and framework
2.1. Student errors in solving probability problems using tree diagrams
Large volumes of empirical research have identified probability as

challenging for students, with various errors in their learning (e.g.,
Batanero & Chernoff, 2018; Park & Lee, 2019). When calculating the
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probability of an event mathematically, one constructs the sample space,
that is, one finds the number of all equal possible outcomes of the
experiment (m) and finds the number of the outcomes involved in the
desired event (n), and then concludes a numerical value for the proba-
bility based on the formula n/m (Batanero & Diaz, 2007; Bryant &
Nunes, 2012; He & Chen, 2025). However, students may make errors in
the above process because they cannot construct sample spaces
correctly. For example, the experiment of removing a ball from each of
two boxes, both containing a black ball and a white ball, generates four
equal possible outcomes, the collection of which is called the sample
space, namely, {black-white, black-black, white-white, white-black}.
Based on this sample space, the probability of the event “black-white
pairing” is 2/4. Unfortunately, some students erroneously construct a
sample space of {black-white, black-black, white-white} and thus
believe that the probability of the event “black-white pairing” is 1/3 (He
& Chen, 2025).

In response to such erroneous reasoning, the use of tree diagrams is
considered an enlightening and visual tool that enables to prevent stu-
dents from making errors in constructing sample spaces (Batanero et al.,
2005; Bocherer-Linder et al., 2018; English, 2005; Landin & Salinas,
2018; Maher & Ahluwalia, 2014) and improve their attitudes and beliefs
about probability (Williams & Nisbet, 2014). To illustrate, in addressing
the problem above, one may decompose the experiment into two steps.
Initially, it can be determined that there are two equally possible out-
comes for the ball removed from one box, allowing for the drawing of
two branches. The endpoint of each branch is referred to as a leaf node,
which represents a single outcome within the sample space of the
experiment of removing a ball from a single box. Subsequently, it is
determined that there are two equally possible outcomes for the ball
removed from the other box. Two new branches are then drawn at the
nodes of each of these two branches, with the two leaf nodes at the end
of these branches representing the two outcomes of the sample space for
the experiment of removing a ball from the other box. It is thus hoped
that students will be able to identify four possible outcomes for the
experiment of removing two balls based on the entirety of the tree di-
agram, thereby avoiding the error of assuming that the probability of the
event “black-white pairing” is 1/3.

The use of tree diagrams to represent and solve probability problems
provides students with an enlightening visual tool that elucidates the
structure of probability and facilitates an understanding of the mathe-
matical calculation of probability, and thus promises them to avoid
resorting to untenable intuitions when solving problems (Aspinwall &
Shaw, 2000; Batanero & Alvarez—Arroyo, 2024; Bocherer-Linder et al.,
2018; Landin & Salinas, 2018; Maher & Ahluwalia, 2014; Munter, 2014;
Zahner & Corter, 2010). In contrast to an unorganized list of outcomes,
using tree diagrams “helps students to easily represent the stages of a
compound experiment” (Landin & Salinas, 2018, p. 258), thereby
enabling students to visually and systematically count the sample space
and to avoid omissions or duplications in enumerating the outcomes.

Nevertheless, they remain vulnerable to errors in using tree diagrams
if the probability problem becomes more complex (Batanero et al.,
2018). Students may suffer from omissions when drawing a tree dia-
gram, thus forgetting to consider drawing branches and leaf nodes
representing certain outcomes. To illustrate, in the context of removing
a ball from a box containing two black balls and one white ball, students
may represent the removal of the black ball and the white ball by
drawing two branches, failing to recognize that the two branches are not
equally probable.

Furthermore, students may encounter difficulties in interpreting the
tree diagram. In the aforementioned context, despite the accurate rep-
resentation of a tree diagram, students may not fully understand the
significance of individual branches and leaf nodes, which can lead to
errors when calculating the probability of compound events. In partic-
ular, when solving problems in which the probabilities of individual
branches are unequal, for instance, when attempting to solve the
problem “a shooter has a probability of 0.7 to hit the target and 0.3 to
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fail. What is the probability of hitting the target exactly three times out
of five shots?” (Sanchez & Landin, 2014, p. 588), students commonly fail
to recognize that the probabilities of the branches are not equal (Sanchez
& Landin, 2014).

2.2. Teachers’ knowledge of student errors in learning probability

Following the mathematical knowledge for teaching (MKT) frame-
work proposed by Hills et al. (2008), proficient mathematics educators
must possess both robust subject matter knowledge (SMK) and peda-
gogical content knowledge (PCK). It is widely acknowledged that
“teachers cannot help children learn things they themselves do not un-
derstand.” (Ball, 1991, p. 5). If teachers possess erroneous mathematical
knowledge, they are likely to disseminate these misconceptions to their
students during instruction, thereby hindering their learning
(Copur-Gencturk, 2021; Hu et al., 2022).

Moreover, teachers’ PCK also proves to be a significant factor
influencing the teaching practice of mathematics (Baumert et al., 2010;
Depaepe et al., 2013). Within the structure of PCK, there is a domain
known as knowledge of content and students (KCS), which concerns
teachers’ knowledge of the process of student learning and errors
encountered, playing an essential role in instructional practices aimed at
addressing student errors (Greefrath et al., 2022; Hill et al., 2008;
Pankow et al., 2018). The importance of teachers’ knowledge about
student errors is well documented. Several studies have highlighted the
positive impact of teachers’ knowledge of student misconceptions
(KOSM) on facilitating students’ shifts in misconceptions and enhancing
conceptual understanding (Hill & Chin, 2018; Sadler et al., 2013).

In light of these perspectives, teachers must possess a robust under-
standing of probability and the requisite knowledge to address student
errors in learning probability (Estrada et al., 2018; Park & Lee, 2019). It
has been demonstrated that PMTs can identify student errors in solving
simple probability problems. However, their ability to identify student
errors diminishes when confronted with more complex or challenging
problems (Chernoff & Zazkis, 2011; Park & Lee, 2019). Tree diagrams
are commonly used to solve probability problems within complex and
challenging experimental contexts. However, to our knowledge, scant
research has examined the analyses and responses to student errors in
probability problem-solving using tree diagrams, particularly in the
context of PMT education.

2.3. Analytical framework

By integrating the perspectives of Peng and Luo (2009) and Son
(2013), Hu et al. (2022) proposed a framework for examining teachers’
analyses of and responses to student errors, as shown in Table 1.

According to this framework, teachers’ analyses of student errors
encompass three key facets: identifying, interpreting, and evaluating
errors. The term “identify error” denotes detecting and explicitly
locating the error. “Interpret error” signifies the elucidation of the

Table 1
Framework for examining teachers’ analysis of and responses to student errors
(Hu et al., 2022).

Aspect Stages or facets Descriptions or classifications
Analysis Identify Articulate student errors.
Interpret Analyze potential causes of the errors.
Evaluate Positive evaluation or negative evaluation.
Responses ~ Mathematical focus ~ Conceptual knowledge or procedural

knowledge.
Specific strategies to address student errors.
Show-tell or give-ask.

Pedagogical actions
Address form

Error use Active use, medium use, or rare use.
Communication Over-generalization, Plato-and-the-slave-boy
barrier approach, return to the basics; Specific to the

student error.
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underlying causes of the error. Finally, “evaluate error” pertains to
teachers’ attitudes towards the error.
Teachers’ responses to students’ errors comprise five facets.

a) Mathematical focus denotes the specific mathematical knowledge
the teacher prioritizes when addressing students’ errors. This en-
compasses both procedural and conceptual knowledge, where the
former includes formulas, procedures, and other technical details,
while the latter comprises definitions, connotations, and other
fundamental concepts.

b) Pedagogical actions refer to the specific teaching strategies teachers
adopt to correct student errors.

c) Form of address reflects whether teachers’ corrective teaching is

student-centered or teacher-centered. Categories include “give-ask”

and “show-tell”. “Give-ask” focuses on student reflection, interac-
tion, and discussion, while “show-tell” emphasizes teachers’ expla-
nations of errors and demonstrations of correct solutions (Runnalls &

Hong, 2020).

Degree of student error use, which reflects how teachers view errors

as valuable resources when dealing with student errors, includes

three categories: active use, medium use, and rare use. Active use
implies that teachers are concerned with errors as the focus and
reference of corrective teaching. In contrast, medium use implies
that teachers only view errors as stepping stones for corrective

teaching (Hu et al., 2022).

e) A communication barrier refers to the obstacles encountered be-
tween teachers and students when communicating about student
errors. These obstacles can be classified into three categories: over-
generalization, the Plato-and-the-slave-boy approach, and return to
the basics. Over-generalization refers to teachers’ proposals of a
program that is too general and lacks specific activities or tasks. The
Plato-and-the-slave-boy approach is characterized by the belief of
teachers that students have temporarily forgotten certain facts or
procedures that have led to the error. This approach entails the
teachers’ belief that the student only needs to be helped to recall
these facts and procedures. “Return to the basics™ is characterized by
a focus on leading students to review basic concepts or principles
while neglecting to address the problem at hand. Furthermore, to
account for responses that effectively address the student’s error
without exhibiting the defined communication barriers, a category
labeled “specific to student error” was included in our coding
scheme, following the methodological approach of Hu et al. (2022).

d

=y

2.4. The present study

Competent mathematics teachers must be able to analyze students’
problem-solving thoughts and reasoning processes and provide effective
interventions accordingly (Bas-Ader et al., 2024; Scheiner & Montes,
2024). Without well-trained teachers, the teaching of probability in
schools would struggle to improve (Huerta, 2018). However, “research
in teacher education related to probabilistic thinking and reasoning has
been identified as scarce” (Ingram, 2024, p. 1). The present study
examined PMTs’ knowledge about addressing student errors in solving
probability problems through their written responses to a hypothetical
student work. We proposed two research questions.

(1) How do PMTs analyze student errors in solving probability
problems using tree diagrams?

(2) How do PMTs respond to student errors in solving probability
problems using tree diagrams?
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3. Methods
3.1. Participants

A total of 41 master’s level students in mathematics education,
comprising 29 females and 12 males, participated in this study.
Following the program of the host university, the training cycle for PMTs
at the master’s level is two years. During the first year, they engage in a
series of courses related to mathematics education, including Design and
Practice of Mathematics Teaching, Analysis of Mathematics Curriculum
Standards and Textbooks, Mathematics Education Psychology, and
Research Methodology in Mathematics Education. Additionally, they
undertake a one-semester internship at a middle or high school and
complete a thesis in their second year. The participants involved in this
study had completed all the requisite first-year courses in the program
but had not yet commenced their internships. Specifically, prior to
participating in this study, they had systematically studied Probability
Theory as part of their undergraduate program and completed a one-
year internship at a middle or high school. During their master’s pro-
gram, they have learned about probability content for elementary,
middle and high school levels through the Analysis of Mathematics
Curriculum Standards and Textbooks course; theoretical knowledge
related to the psychological aspects of mathematics learning through the
Mathematics Education Psychology course; and theoretical and practical
methodologies for developing lesson plans through the Design and
Practice of Mathematics Teaching course.

3.2. Materials

We presented participants with the task of solving a probability
problem using a tree diagram and a hypothetical student work. We
asked them to analyze the errors in the student’s solution and provide
feasible pedagogical strategies to address these errors. This context for
solving probability problems using tree diagrams is familiar in middle
school probability classes (China Ministry of Education, 2022). The task
and hypothetical student work are as follows.

Shu is working on the following problem:

There are three opaque boxes: A, B, and C. Box A contains one red
ball, one yellow ball, and one blue ball; box B contains two red balls and
one yellow ball, and box C contains one red ball and one blue ball, all of
which are identical except for their color. With your eyes closed, remove
one ball from boxes A, B, and C and find the probability of the event “the
three balls removed contain at least one red ball” using the tree diagram
method.

. 4 . o . _

Box Box B

Shu’s reasoning is as follows:

I solved the problem in two steps. [ drew the tree diagram in the first
step, as shown below. In the second step, I found that there are eight
possible combinations of the three balls removed: {Red, Red, Red; Red,
Red, Blue; Red, Red, Yellow; Red, Yellow, Blue; Red, Yellow, Yellow;
Red, Blue, Blue; Yellow, Blue, Blue; Blue, Yellow, Yellow}. The event
“the three balls removed contain at least one red ball” contains six
combinations, as underlined. Therefore, the probability of this event
occurring is 6/8.
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Participants were asked to answer three questions.

(1) What do you think the answer to this question is?

(2) Do you think Shu’s reasoning is correct? If not, please describe
the error(s) reflected in his reasoning and explain why.

(3) What teaching strategies would you take to help him correct his
error(s)?"

Shu’s errors are reflected in two aspects. The first error (Error 1) is
reflected in the first step, where the tree diagram he drew is incorrect.
Given that there are two red balls in box B, the tree diagram should
represent the probability of the red ball being removed as 2/3. This is
typically achieved in two different forms. One approach is to draw three
branches to illustrate that the red ball (which might be labeled Red-B1),
the other red ball (which might be labeled Red-B2), and the yellow ball
have an equal chance of being removed. Alternatively, the branch of the
red ball can be explicitly labeled as having a probability of 2/3, allowing
the product law of probability to be applied. The former approach is
suitable for Chinese middle school students who have not been formally
introduced to the concept of product law of probability.

The second error (Error 2) is reflected in the fact that, even if we
assume that his first step was correct, he made an error in enumerating
the possible combinations of the three balls removed according to the
tree diagram. In other words, he constructed an incorrect sample space.
According to the tree diagram he drew, the sample space should
comprise 12 outcomes, each with an equal probability, rather than
combining the four equal outcomes of “Red-A, Red-B1, Blue-C’, “Red-A,
Red-B2, Blue-C’, “Blue-A, Red-B1, Red-C’, and “Blue-A, Red-B2, Red-C’
into a single outcome designated as “Red, Red, Blue.” In a correct tree
diagram, there are 18 possible combinations of the three balls removed.
Thus, the sample space includes 18 outcomes of {Red-A, Red-B1, Red-C;
Red-A, Red-B1, Blue-C; Red-A, Red-B2, Red-C; Red-A, Red-B2, Blue-C;
Red-A, Yellow-B, Red-C; Red-A, Yellow-B, Blue-C; Yellow-A, Red-B1,
Red-C; Yellow-A, Red-B1, Blue-C; Yellow-A, Red-B2, Red-C; Yellow-A,
Red-B2, Blue-C; Yellow-A, Yellow-B, Red-C; Yellow-A, Yellow-B, Blue-
C; Blue-A, Red-B1, Red-C; Blue-A, Red-Bl, Blue-C; Blue-A, Red-B2,
Red-C; Blue-A, Red-B2, Blue-C; Blue-A, Yellow-B, Red-C; Blue-A, Yel-
low-B, Blue-C}, thus the probability of the desired event is 16/18.

! 1t is noteworthy that the design of the third question implicitly suggests that
error(s) exist(s) in the student’s reasoning presented in the second question. We
acknowledge that this could potentially influence participants’ responses to the
second question, as it may prime them to look for an error. However, this design
was intentional and aligned with the study’s objective, which focuses not on the
detection of errors per se, but on the analysis and response to errors once they
are identified. In authentic teaching scenarios, teachers are typically already
aware that a student’s answer is incorrect before devising an instructional
response. Thus, the task sequence mirrors a realistic pedagogical situation
where the teacher’s goal is to understand and address a known student diffi-
culty. The primary focus of our analysis was therefore on the depth and quality
of the PMTs’ error interpretation and their proposed teaching strategies, rather
than on the simple act of error detection.
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3.3. Data collection

The researcher informed the participants that the purpose of this
investigation was to examine preservice teachers’ pedagogical knowl-
edge, and all participants provided written consent to participate in this
investigation. Data were collected at the end of the semester when the
participants had completed their first year of the training program. The
participants were invited to complete a coursework assessment to
evaluate the PMTs’ PCK during a regular class lasting 60 min. Accord-
ingly, the data analyzed in this study are the written responses provided
by the participants. To collect as much data as possible, the researchers
provided participants with sufficient answer sheets and encouraged
them to use written words, illustrations, or other forms to express their
thoughts fully. According to post-analysis, the average length of the
participants’ written responses exceeded 600 words. Pseudonyms were
used when quoting participants’ written responses.

3.4. Coding

Following the established analytical framework, four researchers
coded the participants’ written responses through an iterative review
process. In this process, the four coders initially coded independently,
revisiting the definitions of the coding categories whenever discrep-
ancies emerged and discussing these discrepancies in depth until a
consensus was reached (Syed & Nelson, 2015). In this study, the four
coders examined the analytical framework in detail and underwent
training on the coding criteria before commencing their work. They then
confirmed that their understanding of the framework and criteria was
consistent. During the coding process, approximately 10 % of their
initial independent coding revealed discrepancies. However, after dis-
cussions and iterative reviews, these discrepancies were resolved, and a
consensus was finally reached.

The first question was designed to examine whether the PMTs could
solve the problem. It was coded as 1 for a correct response by the
participant and O for an incorrect response.

The second question was designed to examine how PMTs analyze
student errors, categorized into three distinct facets. The identification
of errors was readily apparent from the written responses. The inter-
pretation of errors was derived from an iterative qualitative analysis of
the written responses related to specific errors.

The coding of PMTs’ interpretations for Error 1 included three cat-
egories: a) The interpretations provided were overgeneralized (Inter-
pretation 1); b) It is highlighted that Shu did not consider the equal
probability of the three balls in box B being removed, and incorrectly
assumed the three possible outcomes, namely, {Red-A, Red-B, Yellow},
to be {Red, Yellow}, leading to a flawed tree diagram (Interpretation 2);
and c) It is acceptable that Shu drew the tree diagram with the branches
of box B in two, but he did not explicitly label the probability of the red
ball being removed as 2/3, resulting in an incorrect answer (Interpre-
tation 3).

The coding of the PMTs’ interpretations for Error 2 included three
categories: a) The interpretations provided were overgeneralized
(Interpretation 1); b) Proposing the correct solution to be used as an
interpretation (Interpretation 4); and c) Suggesting that Shu did not take
into account the equiprobability of the individual outcomes when con-
structing the sample space, and incorrectly treated some different out-
comes as a single one (Interpretation 5). Concerning PMTs’ evaluation of
student errors, a similar approach was employed to that used by Hu et al.
(2022), with the data coded into three categories: “positive,” “negative,”
and “half-half.”

The third question was devised to examine how PMTs respond to
student errors, coded from five distinct facets. Following previous
research (Runnalls & Hong, 2020), the mathematical focus was classi-
fied as “conceptual knowledge,” “procedural knowledge,” or “both.”
Specifically, if the relevant concepts pertinent to the problem were
focused upon, including probability, sample space, and so forth, then it
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was coded as a focus on conceptual knowledge. Conversely, if the pro-
cedures, steps, and formulas necessary to solve the problem were the
focus, then it was coded as a focus on procedural knowledge. Finally, if
both conceptual and procedural knowledge were focused upon, it was
double-coded as “both.” The pedagogical actions were associated with
specific errors. Based on an iterative analysis of the written responses,
five activities were identified: a) The teacher introduces students to
relevant knowledge such as probability and the sample spaces but for-
gets to solve the problem at hand, which can be summarized as
“reviewing foundational knowledge” (Action 1); b) The teacher presents
or clarifies the solution to the problem in certain manners and asks
students to practice similar problems, which can be summarized as
“clarifying the solutions” (Action 2); c¢) The teacher traces students’
thoughts through a chain of questions, analyses the causes of errors and
guides students to correct them, which can be summarized as “instruc-
tion through question chains” (Action 3); d) The teacher encourages
students to engage in reflection and discussion with their peers to
identify and correct errors, which can be summarized as “promoting
reflection and discussion” (Action 4); e) The teacher provides students
with the opportunity to engage in experimentation and to gain insight
into probability through the collection and analysis of data, which can
be summarized as “encouraging students to experiment” (Action 5).
Both Action 1 and Action 2 fall within the pedagogical strategies of
direct teaching or corrective feedback. The form of address was coded
into three categories: “show-tell,” “give-ask,” or “both.” Communication
barriers were categorized into four types: over-generalization, the
Plato-and-the-slave-boy approach, returning to basics, and specific to
student error.

4. Results
4.1. PMTs’ analysis of student errors

We first report in passing that all PMTs successfully solved this
problem, demonstrating their robust SMK. Table 2 provides a detailed
analysis of PMTs for the two errors, including their identification,
interpretation, and evaluation.

Identify errors. Forty participants (98 %) identified Error 1,
whereas only 25 (61 %) identified Error 2. Further analysis demon-
strated that all PMTs identified at least one error, with 17 participants
(41 %) identifying one error and 24 (59 %) identifying two errors. It is
noteworthy that PMTs appear less effective at identifying error 2, which

Table 2
The participants’ analysis of the two errors.
Facet Classification N (%)
Error 1 Error 2
Identify Identified 40 (98 25 (61
%) %)
No errors were identified 0 (0 %)
One error was identified 17 (41 %)
Two errors were identified 24 (59 %)
Interpret  Interpretation types Interpretation 1 2(5%) 3(7 %)
Interpretation 2 35 (85 /
%)
Interpretation 3 4 (10 %) /
Interpretation 4 / 13 (32
%)
Interpretation 5 / 22 (54
%)
Number of No interpretation 0 (0 %)
interpretations One interpretation 3 (7 %)
Two 38 (93 %)
interpretations
Evaluate None 39 (95 %)
Negative 0 (0 %)
Half-half 2 (5 %)
Positive 0 (0 %)
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may be because some participants did not explicitly state the error
despite being aware of it. This will be explained later.

Interpret errors. Concerning Error 1, 35 participants (85 %) inter-
preted it as Interpretation 2. This interpretation assumes that Shu did
not consider the equal probability of the three balls in box B being
removed, thus leading to a flawed tree diagram. Four participants (10
%) interpreted it as Interpretation 3. This interpretation assumes that it
is acceptable for Shu to draw the tree diagram with the branches of box B
in two, but that he did not explicitly label the probability of the red ball
being removed as 2/3. Consequently, an incorrect answer resulted. Two
participants (5 %) provided overgeneralized interpretations (Interpre-
tation 1). As can be observed, most participants could provide concrete
and sensible interpretations for Error 1, which can be classified as either
Interpretation 2 or Interpretation 3. In the case of Error 2, 22 partici-
pants (54 %) interpreted it as Interpretation 5, suggesting that Shu had
not taken into account the equiprobability of the individual outcomes
when constructing the sample space and had incorrectly treated some
different outcomes as a single one. 13 participants (32 %) interpreted it
as Interpretation 4, proposing the correct solution as an interpretation.
The remaining 3 participants (7 %) provided overgeneralized explana-
tions (Interpretation 1).

Notably, the written responses yielded explicit statements from most
participants regarding the interpretation of Error 2. This suggests that
these participants identified the error but did not explicitly indicate it in
the response script. The two errors occurred in sequence during the
problem-solving process, resulting in a chain reaction whereby the
appearance of Error 1 affected the subsequent problem-solving pro-
cedure. Some participants may have overlooked the potential errors that
emerged after Error 1 when reporting the errors they identified. To
illustrate, Jingwen interpreted that, “Let us assume that the tree diagram
was correctly drawn, but that such outcomes as ‘Red, Yellow, Red” and
‘Yellow, Red, Red” were treated as one. This remains an unsatisfactory
solution.” Subsequently, she elucidated, “He had already committed an
error (Error 1) in drawing the tree diagram. To be precise, he was un-
aware that there were three equally probable outcomes of the ball being
removed from Box B. Had he not made these errors, a total of 18 possible
outcomes would have been enumerated, 16 of which consist of the
desired event. Therefore, the correct answer is 16/18.”

Furthermore, 38 participants (93 %) provided two interpretations,
while only three (7 %) provided one. This again demonstrates that some
participants, while identifying Error 2, did not explicitly indicate it.

Evaluate errors. In the final step of examining the PMTs’ analysis of
student errors, we attempted to capture opinions or information
regarding the evaluation aspects of the errors from the participants’
response scripts. Unfortunately, 39 participants (95 %), the vast ma-
jority, did not explicitly provide their evaluations of the errors.

4.2. PMTs’ responses to student errors

Table 3 presents PMTs’ responses to errors.

Mathematical focus. First, 23 participants (56 %) preferred to
correct errors by reinforcing students’ procedural knowledge. To illus-
trate, Jing proposed that “the first step should be to label the balls. Thus,
the balls in box A could be labeled Red-A, Yellow-A, and Blue-A; the
balls in box B could be labeled Red-B1, Red-B2, and Yellow-B; and the
balls in box C could be labeled Red-C and Blue-C. Subsequently, the
students were directed to redraw the tree diagram, which would reveal
the inaccuracy of their previous approach.” It appears that her primary
concern was to instruct the students on how to follow the specified
procedure to solve the problem, rather than to guide them in recognizing
the necessity for labeling and the underlying concepts involved.

Second, 17 participants (42 %) were concerned with reinforcing
students’ conceptual and procedural knowledge to correct their errors in
problem-solving. For instance, Qingwen proposed that “educators
should emphasize to students the importance of ensuring that each
outcome in the sample space is equiprobable when determining the
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Table 3
The participants’ analysis of the two errors.
Facet Classification N (%)
Mathematical focus Procedural 23 (56 %)
Conceptual 1(2%)
Both 17 (42 %)
Pedagogical actions” Action types Action 1 18 (20 %)
Action 2 33 (37 %)
Action 3 8 (9 %)
Action 4 11 (12 %)
Action 5 19 (21 %)
Number of actions One action 41 (100 %)
Two actions 32 (78 %)
Three actions 11 (27 %)
Four actions 5012 %)
Address form Show-tell 15 (37 %)
Give-ask 0 (0 %)
Both 26 (63 %)
Errors use Rare use 12 %)
Medium use 22 (54 %)
Active use 18 (44 %)
Communication barrier Over-generalization 12 (30 %)
Plato-and-the-slave-boy 0 (0 %)
Return to the basics 3 (7 %)
Specific to student error 26 (63 %)

2 Since some participants proposed multiple actions, 89 valid records were
captured. It should be noted that when counting the percentage of actions from 1
to 5, the denominator is no longer the number of participants but the total
number of records.

sample space. To address errors effectively, it is essential to undertake
two key steps. Initially, it is vital to facilitate reflection on whether the
ball removed from box B has only two equally probable outcomes, as
illustrated in the tree diagram created by Shu. This step warrants
particular emphasis, as it is only when students can correctly enumerate
the sample space, confirming that all listed outcomes are equally
probable, that they can accurately calculate the probability. Subse-
quently, the students should be guided to label the balls and draw a tree
diagram that represents the experiment in an organized manner.”

Third, a mere one participant (2 %) identified the reinforcement of
students’ conceptual knowledge as a means of correcting errors.

Pedagogical actions. First, most PMTs preferred to respond to stu-
dent errors with pedagogical actions, such as direct teaching or
corrective feedback. The most frequently reported action was Action 2,
“clarifying the solutions,” which occurred 33 times (37 %) out of 89
valid records. In addition, Action 1, “reviewing foundational knowl-
edge,” was observed on 18 occasions (20 %).

Second, Action 5, “encouraging students to experiment,” occurred 19
times (21 %). For example, Yong suggested, “I would simulate the
context by giving students the box and the balls and then asking them to
conduct multiple experiments to gain experience. In particular, I would
allow them to experience that the red ball is removed from box B more
frequently than the yellow ball, thus noticing that the tree diagram Shu
drew is wrong. In addition, I would consider resorting to software to
develop a simulated application of this context to help the students
notice Shu’s errors through computer-simulated experiments.”

Third, Action 4, “promoting reflection and discussion,” occurred 11
times (12 %). For example, Feiyang suggested, “In response to the first
error, I would ask him, ‘If there are ten red balls and one yellow ball in
box B, and a ball is randomly removed from the box, what is the prob-
ability that the removed ball is a red one?’ I think the disparity in the
number of red and yellow balls could make the students think differ-
ently. For the second error, I'd suggest playing a game of tossing two
coins and then asking the students what the probability of a heads-tails
pair is. If we follow Shu’s logic, the answer would be 1/3. I'd then steer
the discussion towards whether there’s a difference between the head-
tail and tail-head outcomes. Finally, I'd like to remind them that ‘Red,
Red, Yellow’ and ‘Red, Yellow, Red’ are not the same outcome.”

Fourth, Action 3, “instruction through question chains”, was
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mentioned the least, at eight times (9 %). Fifth, in terms of the number of
activities proposed, all 41 participants (100 %) proposed at least one
action, 32 participants (78 %) proposed two actions, 11 participants (27
%) proposed three actions, and 5 participants (12 %) proposed four
actions.

Address form. First, 26 (63 %), the majority, of the participants
adopted both the “show-tell” and “give-ask™ forms. Second, 15 partici-
pants (37 %) adopted the “give-ask” as the sole form. Third, none of the
participants adopted the “show-tell” as the sole form.

Errors use. First, 18 participants (44 %) viewed student errors
positively, treated them as the focus of instructional interventions, and
taught against them (active use). Second, 22 participants (54 %) viewed
student errors as a stepping stone (medium use). Third, only one
participant (2 %) completely disregards student errors (rare use).

Communication barrier. First, 12 participants (30 %) revealed the
communication barrier of over-generalization when responding to stu-
dent errors. Second, three participants (7 %) revealed the communica-
tion barrier of returning to the basics when responding to student errors.
Third, the participants’ response scripts did not identify the communi-
cation barrier associated with the Plato-and-the-slave-boy approach.
Fourth, 26 (63 %), the majority of the participants did not encounter a
communication barrier when responding to student errors.

5. Conclusion, discussion, and implications

We begin with answers to the research questions, followed by a
discussion of the findings, implications, and contributions of this study.

5.1. How do PMTs analyze student errors in solving probability problems
using tree diagrams?

The findings of this study demonstrated that, although some partic-
ipants did not explicitly articulate Error 2, they could identify the error
through the lens of the subsequent interpretation of the error. Therefore,
PMTs performed well overall in identifying student errors. However, we
must acknowledge that there may be a discrepancy between the iden-
tification of student errors by PMTs and their explicit articulation of
these errors. The phenomenon may be attributed to the chain effect of
errors, whereby initial errors lead to a subsequent series of errors. Some
participants may have focused solely on the initial error, thereby over-
looking subsequent errors when representing student errors. This
finding reflects their lack of awareness of categorizing and recording
errors. It is therefore recommended that examples of analyzing students’
errors be included in the PMTs’ training program, with opportunities
provided for them to practice analyzing student errors in various con-
texts. Particular guidance should be provided on the accuracy and
completeness of error identification, as well as on explicitly identifying,
articulating, and communicating students’ errors.

The findings of this study indicated that most participants could
accurately interpret the underlying causes of Error 1. The participants
proposed that the student failed to clarify that the chances of the red and
yellow balls being removed from box B were not equally probable.
Consequently, they recommended that either a new branch be added or
that the probabilities of the two branches be labeled when drawing the
tree diagram (Interpretation 2 and Interpretation 3). Over half of the
participants could provide concrete interpretations of the causes of Error
2 (Interpretation 5). They argued that the students did not understand
that all the outcomes in the sample space needed to be equally probable.
The capacity of the PMTs to accurately interpret student errors may be
associated with their robust SMK. This might be evidenced by the fact
that they were all able to solve the problem correctly. Furthermore, the
results of this study indicated that most participants provided more than
one interpretation. The causes of student errors in problem-solving can
be multifaceted, each suggesting different pedagogical implications
(Shaughnessy et al., 2021). Once again, the capacity of PMTs to offer
multiple interpretations of student errors reflected their proficiency in
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analyzing errors from a student perspective.

The findings of this study indicated that the overwhelming majority
of PMTs did not explicitly evaluate student errors. This may be because
we did not explicitly request that participants express their attitudes
toward student errors. We speculate that if the participants had been
explicitly asked to express their attitudes toward student errors, they
might have expressed various opinions, including some positive ones. In
other words, we may have underestimated the proportion of PMTs with
positive attitudes towards student errors. However, this finding also
precisely reflected the lack of awareness of proactively evaluating stu-
dent errors. This finding is consistent with existing research indicating
that some teachers may perceive errors as an indication of failure,
leading to a reluctance to confront student errors or a preference for
focusing on correcting them rather than utilizing them as valuable
learning opportunities (Shaughnessy et al., 2021). This phenomenon of
PMTs’ lack of awareness in evaluating student errors underscores the
necessity for enhancing their perception of the significance of student
errors and their skills in offering constructive feedback. Teacher training
programs must, therefore, place greater emphasis on these aspects.
Moreover, teacher educators must encourage PMTs to engage in
reflective practice concerning student errors, in addition to identifying
and interpreting them. This should be done to promote a positive atti-
tude towards such errors. A positive evaluation of student errors has
been demonstrated to promote learning and foster self-confidence.
When teachers adopt a positive and encouraging approach to evalu-
ating student errors, students perceive the teacher’s emotional support,
which in turn enhances their motivation, engagement, and persistence
(Heinze et al., 2012; Kafer et al., 2019; Soncini et al., 2021). Research
has demonstrated that teachers’ positive attitudes towards student er-
rors, such as respect, acceptance, and tolerance, can reduce students’
anxiety or fear of making errors. This, in turn, can enhance risk-taking
attitudes and persistence in problem-solving (Tulis, 2013). Teachers’
negative and problematic attitudes toward student errors can hinder the
creation of a supportive learning environment for their students
(Leighton et al., 2022). In light of this, it is hypothesized that teachers’
friendly, inclusive, and positive view of student errors can facilitate the
formation of learning environments that encourage creativity and
exploration and facilitate meaningful reflection on the process of mak-
ing errors. It is, therefore, essential to provide PMTs guidance to pro-
mote the development of an optimistic, inclusive, and constructive
attitude towards errors (Hu et al., 2022).

5.2. How do PMTs respond to student errors in solving probability
problems using tree diagrams?

This study’s findings indicated that most participants preferred to
address student errors by reinforcing procedural knowledge, suggesting
a tendency to prioritize the acquisition of correct procedures over the
development of conceptual understanding. This finding is consistent
with existing research indicating that teachers prioritize enhancing
procedural knowledge when addressing student errors (Runnalls &
Hong, 2020; Son, 2013; Stohl, 2005). While procedural knowledge is
essential for solving specific problems, conceptual knowledge provides
students with a foundation for understanding the principles and logic
behind the problems. The resolution of probability problems cannot be
accomplished by merely applying algorithms and formulas; rather, it
necessitates establishing a coherent structure of probabilistic thinking
(Erbas & Ocal, 2022). Prior research has shown that a dual pedagogical
approach, which emphasizes both procedural and conceptual knowl-
edge, enhances students’ capacity to comprehend mathematical con-
cepts and refine their problem-solving skills (Runnalls & Hong, 2020). It
is encouraging to observe that some participants demonstrated an
awareness of the significance of conceptual knowledge and adopted a
more comprehensive and balanced approach to correcting the errors.
This approach reflected a more holistic perception of the nature of stu-
dent errors and a recognition of the importance of fostering a deeper
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conceptual understanding of mathematical concepts among students.
This dual focus is crucial because it involves not only solving the
probability problem with the help of a tree diagram but also applying
probabilistic thinking and the underlying principles that underpin the
construction of this tree diagram.

The findings of this study indicated that “reviewing foundational
knowledge” and “clarifying the solutions” dominated all the proposed
teaching actions, suggesting that PMTs favor presenting students with
clear explanations and paradigms when correcting errors. This phe-
nomenon may be related to traditional practices in Chinese mathematics
education that emphasize basic knowledge, problem-solving solutions,
and practice (Sun, 2011; Tang et al., 2013). Alternatively, it may be
linked to the pedagogical tradition in Chinese mathematics education
that emphasizes using exemplary lessons (essentially a standard, excel-
lent example) to enhance teaching practice (Huang et al., 2013; Niu
et al., 2017). Viewing these two teaching activities as conservative or
backward would be inappropriate. Indeed, recent studies have indicated
that the absence of substantial analysis of the concepts or principles
behind errors in correcting students’ errors may limit the opportunities
for students to learn from their errors (Alvidrez et al., 2024).

However, this study observed that PMTs placed less emphasis on
“instruction through question chains” (Action 3) and “promoting
reflection and discussion” (Action 4), suggesting that PMTs may have
relied too heavily on reinforcing the basics or providing exemplary
patterns (so-called standard reasoning) while neglecting the positive
effects of other, more inquiry-based, instructional approaches for cor-
recting students’ errors. Only when teachers design activities that pro-
vide opportunities for students to engage in thinking and reflection can
they become active learners (Ahuja, 2018). It is noteworthy that
“encouraging students to experiment” (Action 5) is not a frequently
mentioned approach; however, it is encouraging as it has been demon-
strated to have a positive effect on the visual perception of probability in
students (Nilsson et al., 2018; Paparistodemou & Meletiou-Mavrotheris,
2008; Park & Lee, 2019). China’s most recent mathematics curriculum
standards explicitly recommend that teachers integrate and coordinate
multiple pedagogical approaches, including direct and non-direct
teaching, to promote students’ mathematics learning (China Ministry
of Education, 2022). The study revealed that some participants proposed
various teaching activities, indicating that PMTs are flexible in
addressing student errors and are conscious of integrating diverse
pedagogical approaches to meet students’ needs and address multiple
errors. This finding is encouraging as it suggests that PMTs are aware of
the need to develop diverse pedagogical strategies required for effective
mathematics teaching. However, the relatively limited number of par-
ticipants who suggested three to four activities indicates that there is
scope for further expansion of their repertoire of pedagogical strategies.
Therefore, training programs should provide PMTs with practical op-
portunities to apply these approaches in their teaching, thereby enabling
them to gain exposure to and utilize a more diverse range of
student-centered and inquiry-based teaching methods.

The findings of this study revealed that the combination of “show-
tell” and “give-ask” was the most popular among PMTs in terms of
address form. This reflects their dual emphasis on lecturing and asking
questions, as well as their awareness of the importance of interaction
between the teacher and students in corrective teaching. Some partici-
pants employed the unique address form of “give-ask,” however, it is
noteworthy that none of the participants utilized the unique address
form of “show-tell,” which may suggest that they recognize the limita-
tions of the “show-tell” approach and the necessity to incorporate
questioning and interaction into corrective teaching. The traditional
lecturing approach may effectively correct students’ errors immediately,
but it has been demonstrated to have limitations in developing students’
capacity for deep understanding, reflection, and critical thinking. Prior
research has shown that traditional lecturing has a constrained impact
on correcting students’ errors. Conversely, indirect teaching approaches
that prioritize student-centeredness and facilitate student interaction
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have been identified as more effective in promoting students’ learning
(Madu & Orji, 2015; Shaughnessy et al., 2021; Taslidere & Yildirim,
2023).

This study’s findings indicated that most participants did not ignore
students’ errors, which is encouraging and reflects PMTs’ attention to
the resources of errors. Errors should not be viewed negatively but
rather as an essential resource for establishing students’ mathematical
comprehension (Ahuja, 2018; Alvidrez et al., 2024; Font et al., 2024; Hu
et al., 2022; Shaughnessy et al., 2021; Stockero et al., 2020; Tan Sisman
& Aksu, 2016), and can serve as guidelines for teachers to adapt in-
struction (Tulis, 2013). It was observed that some participants regarded
student errors as the focus of instructional interventions (active use),
indicating a readiness to view errors as a potential avenue for student
learning and a foundation for corrective teaching. However, while not
ignoring student errors, most participants only used them as a stepping
stone (moderate use), indicating that PMTs may not fully recognize the
potential of errors to facilitate conceptual comprehension. This finding
is consistent with previous research, which stated that teachers do not
favor using errors to promote student learning in many mathematics
classrooms worldwide. Indeed, such errors are often viewed as a nega-
tive, embarrassing, or shameful aspect of the learning process (Alvidrez
et al., 2024; Bray, 2011; Tulis, 2013). Therefore, teacher educators must
facilitate a deeper comprehension of the effective utilization of errors
among PMTs.

This study’s findings indicated that most participants did not exhibit
significant communication barriers in their responses to student errors.
Another encouraging finding is that no such communication barrier as
the Plato-and-the-slave-boy approach was captured from the partici-
pants’ written responses. This suggests that PMTs can consciously pur-
sue meaningful approaches to mathematical learning. However, it was
observed that a proportion of participants exhibited a communication
barrier of over-generalization, as evidenced by the provision of vague or
overly generalized interventions, which lacked targeted specificity. This
indicates the need for PMTs to enhance their capacity to furnish more
detailed and tailored instructional responses to students, thus enabling
the effective navigation of the nuances of student errors (Ahuja, 2018).
Furthermore, a few participants demonstrated the communication bar-
rier of “return to the basics,” indicating an excessive focus on founda-
tional knowledge without addressing the balance between reviewing
foundational knowledge and solving the problem. Focusing solely on the
basics may result in students acquiring knowledge that lacks practical
significance and, therefore, lacks robustness.

To summarize, this study has three main contributions. First, as
recent research has proposed, there is a paucity of studies on teachers’
knowledge of students’ probabilistic thinking, reasoning, and learning
(Batanero & Alvarez-Arroyo, 2024; Ingram, 2024). The present study
concentrated on the analysis and response of PMTs to the errors that
occur when students utilize tree diagrams to solve probability problems
in compound experiment contexts, specifically those with more complex
constraints. The findings of this study contribute to the existing body of
knowledge in this field, providing insights into the knowledge of PMTs
regarding learning and teaching probability. Second, this study exam-
ined PMTs’ knowledge of analyzing and responding to student errors in
detail through a comprehensive framework that considers multiple
facets simultaneously. Thus, the findings advance the understanding of
teachers’ PCK regarding this specific topic and provide insight into
developing PMS’s PCK. These insights provide a foundation for future
research to further explore PMTs’ PCK. Third, this study informs the
design and improvement of training programs for PMTs, such as incor-
porating error correction activities to enhance their knowledge of stu-
dent learning in mathematics.

6. Limitations and further research

This study has two limitations. The first is that the sample size was
small; thus, when interpreting the results, it cannot be overgeneralized.
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The second is that the study relies solely on participants’ written re-
sponses, which may not fully reflect their reasoning and thinking. For
example, the present study has not captured enough information con-
cerning the participants’ evaluation of student errors. If they had been
explicitly requested to express their attitudes, there might have been
richer data to describe the error evaluation facet better.

Furthermore, it is possible that additional information might have
been captured had further interviews been conducted with them. Future
studies may consider expanding the sample size and adopting methods,
such as interviews and classroom observations, to gain a better under-
standing of PMTs’ approaches to addressing student errors. In addition,
the present study focused on teachers’ PCK. Future research may further
explore the relationship between PMTs’ SMK and PCK.
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