Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge-Oxygen Vacancies: Investigating Mechanism from the Experimental and First-Principle Approach

Chengli He, Yang Chen,* Zixiang Hao, Linrui Wang, Mingyan Wang, and Xiaoli Cui*

Mechanochemical ammonia (NH₃) synthesis is an emerging mild approach derived from nitrogen (N₂) gas and hydrogen (H) source. The gas-liquid phase mechanochemical process utilizes water (H₂O), rather than conventional hydrogen (H_2) gas, as H sources, thus avoiding carbon dioxide (CO_2) emission during H₂ production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO₂), iron(III) oxide (Fe₂O₃), copper(II) oxide (CuO), niobium(V) oxide(Nb₂O₅), zinc oxide (ZnO), and copper(I) oxide (Cu₂O) are investigated as catalysts in mechanochemical N₂ fixation. Among them, TiO₂ shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6-fold higher than the TMO-free process. The theoretical calculations show that N₂ molecules prefer to side-on chemisorb on the mechano-induced bridge-oxygen vacancies in the (101) crystal plane of TiO_2 catalyst, while H_2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative-way hydrogeneration process of activated N₂ molecules to release NH₃ eventually. This work highlights the cost-effective TiO₂ mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect-engineering-induced mechanocatalytic mechanism to promote N₂ activation and H₂O dissociation.

1. Introduction

Ammonia (NH₃) is a key precursor for fertilizers, fibers, plastics, explosives, and other chemicals.^[1–3] It is also an ideal hydrogen

C. He, Y. Chen, Z. Hao, L. Wang, X. Cui Department of Materials Science
Fudan University
Shanghai 200433, P. R. China
E-mail: yangchen@shnu.edu.cn; xiaolicui@fudan.edu.cn
Y. Chen
College of Chemistry and Materials Science
Shanghai Normal University
Shanghai 200234, P. R. China
M. Wang
School of Environment and Chemical Engineering
Jiangsu Ocean University
Lianyungang 222005, P. R. China
The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/smll.202309500

DOI: 10.1002/smll.202309500

carrier with a high hydrogen density at 17.6 wt.% and low liquefying pressure ≈ 8 atm,^[4,5] and a promising zero-carbon fuel with a high energy density at 4.3 kW h L⁻¹.^[6,7] NH₃ mainly derives from geochemical processes,^[8] biological photocatalytic N2 fixation,^[9] and the well-known industrially thermos-catalytic Haber-Bosch process.^[10] The Haber–Bosch method has hugely promoted the development of the nitrogen fertilizer industry, bringing a nearly 400% increment in crop yield adapting to the rapidly growing global population,^[8] and has been awarded the Nobel Prize in chemistry three times.^[11] Nevertheless, this process suffers from a relatively low NH₃ single-pass conversion (< 15%), and its critical operation conditions of elevated temperature (400-600 °C) and high pressure (20-40 MPa) account for 1-2% of the annual global energy consumption, and simultaneously producing H₂ feedstocks causes more than 1% of global CO₂ emissions.^[6,12,13] Therefore, developing alternative scalable mild-condition ammonia synthesis routes ambient temperature and

pressure is desired for efficient, energy-saving, and decarbonized NH₃ production.

Numerous accessible strategies involving photocatalysis,^[14-17] catalysis,^[20,21] electrocatalysis,^[18,19] plasma-based photoelectrochemistry,^[22,23] biochemistry,^[24] and mechanochemistry^[3,11,25] have been explored for NH₃ production. Mechanochemistry, typically realized through ball milling, is an emerging method of initiating or accelerating chemical reactions by mechanical energy obtained by shearing, grinding, stretching, cavitation, and high pressure.^[26-29] By creating fresh-reactive surfaces, highly active vacancies, or transient hot spots from the collisions with milling media and catalysts, new reaction routes or unexpected products (e.g., inorganic synthesis,^[30–33] organic synthesis,^[34–37] gas synthesis,^[38,39] and others^[40]) can be achieved even under mild conditions.^[25] The concept of mechanochemical N₂ fixation to directly synthesize NH₃ was initially raised in 1961.^[11,41,42] In 2020, Tricker and co-workers introduced TiN as an effective catalyst to mechanically activate N2 and H2 to synthesize NH3, involving the incorporation of N₂ into Ti lattice and further hydrogenation of TiN under a transient Mars-van Krevelen mechanism.^[25] Then, Han et al. found that NH₃ can be directly produced from N₂ and H₂ via a Fe-catalyzed mechanochemical process at 45 °C and 1 bar and the NH₃ yield reached 45 µmol g_{cat}^{-1} h⁻¹.^[3] In 2021, Reichle et al. reported a cesium-promoted iron catalyst, making the mechanochemical N₂ fixation operate at room temperature and 1 bar, and showed an efficient NH₃ yield of more than 0.2 vol% over 50 h.^[11] Great efforts have been devoted to reducing energy consumption by lowering the temperature and working pressure, yet hydrogen gas is still chosen as the proton source in these gas-phase mechanochemical processes.

Very recently, we demonstrated a one-pot aqueous mechanochemical ammonia synthesis route by employing N₂ gas and H₂O (liquid) as the feedstocks under room temperature and atmospheric pressure, and the NH₄⁺ selectivity is up to 99.2 wt.%.^[43] Though the 304-stainless steel ball-milling equipment itself played an vital catalytic role in promoting N2 activation and H₂O dissociation, we kept exploring more favorable mechanocatalysts to enlarge the NH₃ yield and selectivity in this gas-liquid system. It was reported that the in-situ formed TiN could act as a catalyst for the mechanochemical synthesis of ammonia using N₂ and H₂ as precursors.^[25] Also, both theoretical and experimental studies claimed that various transition metal nitrides (MoN₂,^[44] Mn₄N,^[45] VN,^[46] and others^[47]) have electrocatalytic N₂ reduction capability under mild conditions. However, Hu et al. found that the NH₃ generation originates from the fast chemical decomposition of tetragonal Mo₂N in aqueous electrolytes rather than direct electrocatalytic N₂ reduction.^[48] Thus, transition metal nitrides may not be the most suitable mechanocatalyst candidate in the aqueous mechanochemical N₂ fixation process due to poor chemical stability in presence of liquid feedstock.

Here, we employed several transition metal oxide (TMO) catalysts (TiO₂, CuO, Fe₂O₃, Nb₂O₅, ZnO, and Cu₂O) in this gasliquid mechanochemical process. The TiO₂ dominated with (101) crystal plane shows the highest positive mechanocatalytic activity and a defect-induced enhancement mechanism is proposed according to DFT calculations. The N₂ molecules prefer to sideon chemisorb on the bridge-O vacancies of the TiO₂(101) surface, while H₂O molecules tend to dissociate on the same sites more easily to provide more hydrogen atoms, endowing activated N₂ molecules hydrogenating in an alternative way and releasing twomole NH₃ molecules eventually.

2. Results and Discussion

Figure 1a illustrates the TiO₂(101)-catalyzed mechanochemical N₂ fixation using H₂O as H source. Six potential TMO catalysts, including CuO, Fe₂O₃, TiO₂, Nb₂O₅, ZnO, and Cu₂O, were parallelly evaluated under 25 °C and 1 atm (Figure 1b). The control batch without TMO catalysts gives an NH₄⁺ generation rate of 1.310 mg L⁻¹ h⁻¹, proving a certain catalytic effect of the milling media themselves.^[43] Among all potential TMO catalysts, only TiO₂ and Fe₂O₃ present positive mechanocatalytic activities. The order of NH₄⁺ generation rate (unit: mg L⁻¹ h⁻¹) is TiO₂ (2.233) > Fe₂O₃ (2.036) > None (1.310) > ZnO (1.267) > Cu₂O (0.849) > Nb₂O₅ (0.408) > CuO (0.245) (Figure 1b). As shown in Figure 1b, the enhanced NH₄⁺ generation rate is observed

NANO · MICRO Small www.small-journal.com

with TiO₂ and Fe₂O₃ as mechanocatalyts, while the NH₄⁺ generation rate decreased with the presence of ZnO, Cu₂O, Nb₂O₅, CuO during the mechanochemical reactions. On account of the N₂ and H₂O molecules chemisorbed on transition metal (TM) atoms, the NH₄⁺ production per amount of TM-sites should be considered and can be more appropriate to evaluate the performance of these TMO mechanocatalysts. As shown in **Table 1**, the order of NH₄⁺ generation rate per amount of TM-site (unit: mg L⁻¹ h⁻¹ mol_{TM-site}⁻¹) is TiO₂ (35.67) > Fe₂O₃ (32.53) > ZnO (20.64) > Cu₂O (12.17) > Nb₂O₅ (10.85) > CuO (3.90), which is consistent with the order of NH₄⁺ generation rate, thus further demonstrates the best mechanocatalytic performance of TiO₂.

To investigate the changes in transition metal oxide before and after mechanochemical reactions, solid powders were collected after each parallel experiment. XRD patterns give the dominant crystal plane of each TMO (Figure 1c). the diffraction peak at 44.5° in all samples arises from the (110) crystal plane of Fe (JCPDS 06–0696), originating from abrasion of mill container and balls.^[43] Almost no changes have been observed in their XRD patterns for these transition metal oxides, indicating that the transition metal oxide keeps the same state before and after mechanochemical reactions. The TiO₂ shows a characteristic peak at 25.3° corresponding to the (101) crystal plane of anatase TiO₂ (JCPDS 21–1272), which acts as an active crystal plane for mechanochemical N₂ fixation.

To understand the origin of the significant differences in their mechanocatalytic performance, DFT calculations were performed for these transition metal oxides. It is well known that the adsorption and activation of N₂ on the surface of catalysts is the first step in the N₂ fixation process.^[49] The pristine N₂ has an extremely stable triple bond with a bond length of 1.114 Å and only a high energy variation can weaken and prolong N-N bonds. Thus, the N-N bond distance would be a useful criterion to determine the chemisorption and activation behavior of N₂ on the surface of TMO catalysts.^[49] Figure 1d and Figure S4 (Supporting Information) show the N-N bond length and adsorption energy (ΔE_1) after N₂ molecules chemisorbing onto the dominant crystal plane of each TMO. The trend of N-N bond length follows Fe_2O_3 (1.140 Å) > Fe (1.137 Å) > TiO₂ (1.129 Å) > ZnO (1.117 Å) > Cu₂O (1.115 Å) > N₂ (1.114 Å) = Nb₂O₅ (1.114 Å) = CuO (1.114 Å). In this dimension of N₂ activation, $Fe_2O_3(110)$ is more effective than TiO₂(101), which is contrary to actual N₂ fixation performance (Figure 1b). Note that hydrogenation is another key process in the ammonia synthesis reaction, and more importantly, in this mechanochemical N₂ fixation process, hydrogen atoms come from the decomposition of chemisorbed H₂O, thus the ability of O-H bond cleavage is another crucial factor.^[43] Figure 1e and Figure S4 (Supporting Information) compare the formation energy (ΔE_2) of H-adatom (-H) and OH-adatom (-OH) from H₂O cleavage on the surface of different TMO catalysts. The ΔE_2 on TiO₂(101), Fe(110), and $Fe_2O_3(110)$ surface is -1.15, -0.89, and 0.01 eV, respectively, indicating that -H and -OH adatoms can be generated easily on the $TiO_2(101)$ surface, but hardly on $Fe_2O_3(110)$ surface. Except for TiO₂ and Fe₂O₃, the rest TMOs (CuO, Nb₂O₅, ZnO, and Cu₂O) exhibit little or even negative catalytic activities on neither N₂ activation nor H₂O dissociation. The N-N bond distance of N₂ chemisorbed on the surface of ZnO(101), Cu₂O(111), CuO(111), and Nb₂O₅(001) is 1.117, 1.115, 1.114, and 1.114 Å, respectively,

SCIENCE NEWS _____

Figure 1. a) Schematic illustration of TiO₂ catalyzed mechanochemical N₂ fixation using H₂O as hydrogen proton sources. b) The ammonia generation rate with different transition metal oxide (TMO) catalysts. The label "None" represents the control experiment without TMO catalysts. The reaction conditions are 280 g ball loading, 600 rpm, and 1 h. c) XRD patterns of solid powders collected after each parallel experiment. d) N–N bond distance of N₂ molecule and e) the cleavage energy of H₂O molecule chemisorbed on Fe(110), CuO(111), Fe₂O₃(110), TiO₂(101), Nb₂O₅(001), ZnO(101), and Cu₂O(111) surfaces.

Table 1. Different types of transition metal oxides (TMOs) and corresponding NH_4^+ production, NH_4^+ production per amount of TMO, and NH_4^+ production per amount of transition metal (TM)-sites.

TMOs	Molar mass of TMOs [g/mol]	Amount of substance [mol]	Amount of TM-sites [mol]	NH4 ⁺ production [mg L ⁻¹ h ⁻¹]	NH_4^+ production per amount of TMO [mg L ⁻¹ h ⁻¹ mol _{cat} ⁻¹]	${ m NH_4^+}$ production per amount of TM-site [mg L ⁻¹ h ⁻¹ mol _{TM-site} ⁻¹]
TiO ₂	79.87	0.0626	0.0626	2.233	35.67	35.67
Fe_2O_3	159.69	0.0313	0.0626	2.036	65.05	32.53
ZnO	81.38	0.0614	0.0614	1.267	20.64	20.64
Cu ₂ O	143.09	0.0349	0.0698	0.849	24.33	12.17
Nb ₂ O ₅	265.81	0.0188	0.0376	0.408	21.70	10.85
CuO	79.55	0.0629	0.0629	0.245	3.90	3.90

www.advancedsciencenews.com

IENCE NEWS

Figure 2. a) NH_4^+ generation rate under optimized experimental parameters (700 g ball loading, 650 rpm) using TiO₂, Fe₂O₃ mechanocatalysts or without TMO catalyst,^[43] b) The corresponding NO_3^- generation rate using TiO₂ as mechanocatalyst. The concentration of and NO_3^- is detected by using ion chromatography. c) XRD patterns, d) Raman spectra, and e) FT-IR spectra of solid powders obtained after TiO₂-catalyzed mechanochemical N₂ fixation for 0, 2, 4, 6, 8, 10, 14, and 18 h.

similar to the pristine N₂ (1.114 Å) and much shorter than that of the N₂ chemisorbed on the Fe(110) surface (1.137 Å), illustrating that N₂ can be barely activated on the surface of these four TMOs. Meanwhile, the ΔE_2 of H₂O cleavage on the ZnO(101), Cu₂O(111), CuO(111), and Nb₂O₅(001) surface is -0.03, 0.67, 0.15, and -0.03 eV, which is larger than that on the Fe(110) surface (-0.89 eV), implying that H₂O can be more difficult to dissociate into H-adatoms and OH-adatoms on these TMOs surface. Therefore, a synthetical effect on N₂ activation and H₂O cleavage enables TiO₂(101) and Fe₂O₃(110) remarkable mechanocatalytic activities in this aqueous mechanochemical N₂ fixation.

The time-dependent N₂ fixation using TiO₂ and Fe₂O₃ as mechanocatalysts was evaluated under 25 °C and 1 atm, and the NH₄⁺ concentration was measured by ion chromatography (**Figure 2a**) and Nessler's reagent spectrophotometry (Figure S6, Supporting Information). The NH₄⁺ production shows a linear relationship with the milling time, so the TMO-catalyzed

mechanochemical N₂ fixation is a zero-order reaction. The rate equation is $C(NH_4^+) = 8.71 \times t \text{ (mg } L^{-1})$ for TiO₂ catalyst and $C(NH_4^+) = 5.63 \times t \text{ (mg } L^{-1})$ for Fe₂O₃ as catalyst, verifying that TiO₂ plays an indispensable mechanocatalytic role in this mechanochemical N₂ fixation process, and its catalytic activity is far remarkable than that of Fe₂O₃ or Fe shavings from the milling vessel.^[43] The NO₃⁻ concentration using TiO₂ as mechanocatalyst was also detected by ion chromatography (Figure 2b). No NO₃⁻ can be detected when the ball milling time is less than 14 h, which may be due to the concentration of NO_3^{-} is too low. The concentration of NO_3^- for the reaction time of 14 and 18 h is 0.095 and 0.189 mg L^{-1} , and the corresponding NH_4^+ selectivity is 99.924% and 99.868%, respectively. When the ball milling time is more than 14 h, the generated NO₃⁻ concentration is large enough to be detected. To further evaluate the potential mecanocatalytic N2 fixation ability of TiO2 and rule out the effect of Fe contents, comparison experiments without Fe

contents were carried out at room temperature and atmospheric pressure (Figure S7, Supporting Information). Considering that ZrO_2 is less efficient for mechanochemical N₂ fixation than stainless steel^[43] but is more robust, 180 g ZrO_2 grinding balls and 100 mL ZrO_2 container were chosen as the ball mill equipment (Figure S7a, Supporting Information) and it would be a fair comparison. As shown in Figure S7b (Supporting Information), from 0 to 6 h, the concentration of NH_4^+ showed a linear relationship with the ball milling time and the NH_4^+ generation rate is 1.55 mg L^{-1} h⁻¹. The mechanochemical N₂ fixation process reached chemical equilibrium after ball milling for 8 h.

To investigate the origin of outstanding mechanocatalytic capability of TiO_2 , after the N_2 fixation, the solid powders were collected and characterized accordingly (Figure 2c). The main peak at 25.3° corresponds to the (101) plane of anatase TiO₂, and a minor peak at 27.4° arises from the (110) plane of rutile TiO₂ (JCPDS 87–0920). In Figure 2c, the peak at 35.6° is assigned to (313) plane of Fe₂O₃ (JCPDS 89-5894) and 44.5° comes from (110) crystal plane of Fe. Along with the prolonged ball milling time, the intensity of TiO₂ decreases due to a gradual surface disorder feature, yet the intensity of Fe₂O₃ and Fe increases implying that the wear of the container and balls results in more Fe components and partial Fe may further be oxidized to Fe₂O₃ during the process. According to DFT calculation results, the anatase TiO₂ is more favorable to activating N₂ molecules since the N–N bond length of N₂ on anatase-TiO₂(101) surface (1.129 Å, Figure S4d, Supporting Information) is longer than that on rutile-TiO₂(110) surface (1.114 Å, Figure S4h, Supporting Information). Besides, the anatase-TiO₂(101) surface is more beneficial for H₂O dissociation as well (Figure S4, Supporting Information). Therefore, it is assumed that the anatase phase in TiO_2 (P25) plays a major role in the mechanocatalysis, and the research object in this work is simplified to anatase TiO₂ for further DFT calculations.

Raman scattering is sensitive to crystal defects and the characteristic peaks will shift once the original lattice symmetry is broken or forming a nonstoichiometric crystal.^[50,51] Raman spectra were measured for the series of TiO₂ samples before and after mechanochemical reactions for various time. As shown in Figure 2d, the peaks at 144, 399, 514, and 640 cm⁻¹ correspond to E_g, B_{1g}, A_{1g}, and E_{1g} modes of anatase TiO₂, respectively,^[50-52] and their significantly reduced intensity implies a typical feature of surface disorder.^[50] The peak at 640 cm⁻¹ blue-shifts when extending the milling time, suggesting the formation of oxygen vacancies (O_v) in the TiO₂ crystal lattice.^[50,51] The peak at \approx 1363 cm⁻¹ arises from Ti—N bonds,^[53] indicating the chemisorption of N₂ on the surface of TiO₂.

To further clarify the involvement of TiO_2 in mechanocatalytic ammonia synthesis, the surface-chemisorbed intermediates are investigated by an FT-IR spectrometer (Figure 2e). The existence of stable adsorbates can serve as indicators during mechanochemical N₂ fixation, but the signal of some unstable adsorbates may be hardly captured. In the IR spectra, the broad absorption band at ≈ 3430 cm⁻¹ corresponds to the N–H and/or O–H stretching vibration.^[54] The bands at 2920, 1735, 1720, and 1508 cm⁻¹ are ascribed to NH₃ molecules, and the band at 2850 cm⁻¹ is attributed to NH₄⁺ species.^[55,56] The peaks at ≈ 2365 and 2346 cm⁻¹ may be originated from the distraction of CO₂ in the air.^[43] The peaks at 2328, 2254, and 2092 cm⁻¹ are assigned to the N–N stretching vibration of N₂ species.^[56,57] Furthermore, vibrational peaks at 1707 and 1560 cm⁻¹ come from –NH₂ species while those at 1684 and 1655 cm⁻¹ are from –NH species. The bands at ≈1635, 1620, and 1542 cm⁻¹ belong to the δ_{as} (NH₃) of H₂N–NH₃⁺.^[56] The vibrational peak at 1458 cm⁻¹ is ascribed to the –NH₂ scissoring of –N₂H₄ species.^[56]

The chemical bonding and surface states of pristine and milled TiO₂ catalysts are investigated by XPS spectroscopy. Except for C, O, and Ti elements in the pristine TiO₂, another two characteristic signals of N and Fe elements emerge in the milled TiO₂ catalysts (Figure 3a). In the Ti2p core level (Figure 3b), four subpeaks of Ti³⁺ $2p_{3/2}$ (456.8 eV), Ti⁴⁺ $2p_{3/2}$ (459.8 eV), Ti³⁺ $2p_{1/2}$ (462.4 eV), and Ti⁴⁺ $2p_{1/2}$ (465.4 eV) imply that the pristine TiO₂ itself contains certain oxygen vacancies (O_v) in the presence of $\rm Ti^{3+}$ species. $^{[49,58]}$ For the milled $\rm TiO_2,$ 0.4 eV-shift to lower binding energy and an enlarged content of Ti³⁺ (12.1% of milled TiO₂ versus 10.1% of pristine TiO₂) indicate that more O_y is generated during the ball milling process. Likewise, the peak at 531.8 eV in the O1s core level shifts to a higher binding energy after ball milling for 2 h (Figure 3c), further confirming more O_v in the milled TiO_2 . In the high-resolution N1s spectra (Figure 3d), two weak peaks at 401.1 and 402.6 eV are attributed to N₂ physisorption on the surface of pristine TiO₂.^[3,59] Two sub-peaks at 400.3 and 401.8 eV in the milled TiO_2 arise from the chemisorption of N₂ molecules.^[59] Meanwhile, the sub-peak at 398.8 eV is attributed to the substituted-N by replacing O atoms in the lattice of TiO₂.^[60] As shown in Figure S8 (Supporting Information), trivalent Fe that centered at 712.4 and 725.0 eV are also observed in the milled TiO₂.^[54,55] The Fe component originates from the wear of stainless steel equipment and is further oxidized during the ball milling process. The electron energy loss spectroscopy (EELS) characterization of Ti-L2.3 edge was performed to verify the oxidation state changes in TiO₂ before and after the reactions. According to the literature, the TiO₂ present Ti⁴⁺ features with two peaks at 458.4 (Ti-L₃) and 463.7 (Ti-L₂) eV, respectively.^[49] The Ti L_{2,3} edge of Ti oxides in the EELS spectra shifts to lower energy with decreasing oxidation state (+4, +3, and +2), and the shift of each oxidation state is $\approx 1.7-2.0$ eV.^[61] As shown in Figure 3e, the unmilled TiO₂ showed two peaks at 458.1 (Ti-L₃) and 463.4 (Ti- L_2) eV, respectively, shifting 0.3 eV to lower energy compared to the TiO₂ with Ti⁴⁺ oxidation state in the literature,^[49] indicating that the oxidation state of Ti in unmilled TiO_2 is mostly +4 and a small amount is +3. For the TiO₂ milled 2 h, the corresponding two peaks centered at 456.9 and 462.2 eV, showing a shift of 1.2 eV to lower energy for the Ti-L edge in the EELS spectra, implying that the Ti³⁺ content of milled TiO₂ increased after the reaction.

DFT calculations are carried out to further elucidate the catalytic capability of TiO₂ catalysts in mechanochemical N₂ fixation. First, we investigated the possible sites of oxygen vacancies. The mechanical energy generated during ball milling can create fresh reactive surfaces and high active defect sites,^[25] so more oxygen vacancies would emerge after ball milling. Figure S9 (Supporting Information) shows two types of oxygen vacancies on the TiO₂(101) surface, namely TiO₂(101)-O_v-1 (bridging oxygen) and TiO₂(101)-O_v-2 (non-bridging oxygen), and their formation energy is 3.93 and 4.16 eV, respectively, so the bridging oxygen vacancies are easier to form on the surface of TiO₂(101). Second, the surface chemisorption and activation of N₂ molecules are of ADVANCED SCIENCE NEWS

Figure 3. a) XPS spectra and corresponding high-resolution Ti 2p b), O 1s c), and N 1s d) core levels of pristine and milled TiO_2 powders. e) Electron energy loss spectroscopy (EELS) of the Ti-L edge recorded across the pristine TiO_2 and milled TiO_2 powders.

great significance to initialize the mechanochemical N₂ fixation. **Figure 4a** and Table S3 (Supporting Information) present the geometry structure, adsorption energy (ΔE), and N—N bond distance of N₂ chemisorbed on the TiO₂(101) surface under sideon and end-on way. The adsorption energy of N₂ on the O_v sites is -0.92 eV in a side-on way and -0.56 eV in an end-on way, both of which are much higher than that on the Ti sites adjacent to or away from the O_v sites, indicating the favorable N₂ adsorption on the O_v sites. Also, the N—N bond length on the O_v sites (1.192 or 1.141 Å) is much longer than that on the Ti sites (1.115–1.118 Å) and the original N₂ molecule (1.114 Å), suggesting that the N—N bond is weakened and activated effectively. Figure 4b,c shows the charge density difference of N₂ molecules chemisorbed on TiO₂(101)-O_v-1 in a side-on or end-on way. Electrons transfer between two sideward Ti atoms adjacent to the O_v site and the N₂ molecule through an "acceptance-donation" process, that is, Ti atoms accept lone pair electrons and donate available d-orbital electrons back into the antibonding orbital of π N–N to activate the N₂ molecules.^[57] The N–N bond of N₂ chemisorbed in a side-on way (Figure 4b) is weakened and activated more significantly than that in an end-on way (Figure 4c), so N₂ molecules are more favorable to chemisorbing on bridging oxygen vacancies of TiO₂ mechanocatalyst in a side-on way.

www.small-journal.com

www.small-journal.com

Figure 4. a) The geometry structure of N_2 molecule side-on and end-on chemisorbed on the TiO₂(101)-O_v-1 surface at (i,iv) O_v sites, (ii,v) Ti sites adjacent to O_v, and (iii,vi) Ti sites away from O_v, respectively. Charge density difference of N_2 chemisorbed on the O_v sites in a side-on way b) and end-on way c). The green and yellow iso-surfaces represent the enriched and depleted electron arrangement in space, respectively.

Figure 5. The pathway of H_2O molecules chemisorbed and dissociated on the TiO₂(101)-O_v-1 surface at a) Ti sites away from O_v, b) Ti sites adjacent to O_v, and c) the O_v sites.

www.small-journal.com

Figure 6. The possible mechanism of mechanochemical N₂ fixation on the $TiO_2(101)-O_v-1$ surface in a distal pathway a) or an alternating pathway b). The variation of c) N–N bond distance and d) the formation energy at each reaction step.

The chemisorption and dissociation of H₂O is another crucial factor for the involvement of H₂O as the H source in mechanochemical N2 fixation reaction. Figure S4d (Supporting Information) shows the geometry structure of chemisorbed H₂O molecule, OH-adatom, and H-adatom on the surface of TiO₂(101). The formation energy of OH-adatoms and H-adatoms from H_2O dissociation is initially calculated to be -1.15 eV. Figure 5 further simulates the process of H₂O molecules dissociating and simultaneously releasing free H . Note that free H are different from H-adatoms due to the need for more energy input. The formation energy of H₂O chemisorbing on the Ti sites away from O_v is -0.721 eV, and that of the O-H bond cleavage to form OH-adatom and then O-adatom is 3.864 and 4.361 eV, respectively (Figure 5a). In comparison, H₂O molecules chemisorbed on the Ti sites adjacent to O_v or on the O_v sites are more feasible in terms of energy variation and the formation energy of two free H is much lower as well (Figure 5b,c). The generated free H are sources for hydrogenating the activated N₂, while the remained O-adatoms may be consumed in the following ways: I) entering the O_v sites (Figure 5c), II) oxidizing the stainless-steel powders to form iron oxides, and III) generating O₂ gases (Figure S10, Supporting Information).

The possible distal or alternating hydrogenation pathways of activated N_2 on the TiO₂(101)-O_v-1 surface are studied (**Figure 6**). Tables S2 and S3 (Supporting Information) show the total energy and optimized geometry structures of various intermediates involved in the reaction. In the distal pathway (Figure 6a), the ac-

tivated N₂ chemisorbs on the O_y site in an end-on way, and the first-step hydrogenation preferentially occurs on the N atoms farthest from the $TiO_2(101)-O_v-1$ surface so the terminal N atoms do not directly interact with the catalyst. After releasing the first NH₃ molecule, the remaining lattice N atom is hydrogenated to release the second NH₃ molecule. In the alternating pathway, two N atoms chemisorb on the O_v sites and hydrogenate alternately (Figure 6b), so that all N-N bonds are broken and NH₃ molecules are released from the $TiO_2(101)-O_y-1$ surface sequentially. Figure 6c shows the N-N bond distance at each elementary reaction step. The O_v sites as side-on chemisorption centers of N2 molecules increase the N-N bond distance more efficiently, and the N-N bonds are continuously weakened as the hydrogenation process proceeds. In the alternating pathway, the N-N bond distance increases nearly three times before NH₃ release. The change of formation energy (ΔE) at each step is calculated simultaneously (Figure 6d). Once N₂ molecules chemisorb on the bridge-O_v sites, the subsequent hydrogenation with free H atoms either in a distal or alternating pathway is an energyreleasing process. The free H atoms originate from the dissociation of H₂O and its formation energy is 2.51 eV on average (Figure 5). Therefore, the ability of H_2O dissociation to provide H atoms is the rate-determining step in this system. Besides, the direct dissociation of N-N bonds is another potential N2 fixation route (Figure S11, Supporting Information). Similarly, N₂ molecules first chemisorb on the $TiO_2(101)-O_{y}-1$ surface in an end-on or side-on way and then break the N-N bonds to leave

N-adatoms, during which required external energy input is 9.78 and 10.15 eV, respectively. So, the direct dissociation route is not preferred in this process due to a high energy barrier. Therefore, side-on N₂ chemisorption on the bridge-oxygen defect sites of TiO₂(101) surface and H₂O dissociation to generate free H atoms are two key factors in this mechanochemical N₂ fixation under an alternating pathway. Table S4 (Supporting Information) shows the comparison of different ammonia synthesis technologies in recent years.

3. Conclusion

In summary, for the first time, we have demonstrated that TiO₂ can be acted as mechanocatalyst using H₂O as H sources for ammonia synthesis. The mechanocatalytic performance of six transition metal oxides including TiO₂, Fe₂O₃, CuO, Nb₂O₅, ZnO, and Cu₂O was investigated in mechanochemical N₂ fixation. It is found that TiO₂ shows the best mechanocatalytic capability, with the reaction rate constant is 3.6-folds larger than that without catalysts. The DFT calculations indicate that both the chemisorption and activation of N₂ and the H₂O dissociation are two key factors to improve the mechanochemical N2 fixation performance in $N_2 + H_2O$ system. As for TiO₂, the origin is the mechano-induced bridge-oxygen vacancies in the surface of TiO_2 , which are in favor of chemisorption and activation of N2 molecules in a side-on way, simultaneously facilitated dissociation of H2O molecules to provide abundant free H atoms, and thus alternative-way hydrogenation to release NH₃. This work not only proposes a mechanocatalytic mechanism driven by defective engineering of TiO₂ but also provides a criterion for catalyst selection to further lower energy barriers in mechanochemical N₂ fixation under mild conditions.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was supported by the Natural Science Foundation of Shanghai (20ZR1403300) and the National Natural Science Foundation of China (52002076). The authors appreciate Prof. Shangpeng Gao from Fudan University for his helpful discussions in DFT calculations. The authors also appreciate Dr. Qiaodan Li (Shanghai Huali Integrated Circuit Manufacturing Corporation) for the helpful discussions in DFT calculations.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords

Ammonia synthesis, $\rm H_2O$ dissociation, mechanochemistry, $\rm N_2$ adsorption, $\rm TiO_2$

Received: October 19, 2023 Revised: November 10, 2023 Published online:

- P. Wang, J. Yan, S. Wang, P. Xu, L. Shen, T. Song, *Bioresour. Technol.* 2021, 340, 125641.
- [2] B.-H. Wang, B. Sun, L. Chen, M.-Q. Cai, S.-F. Yin, J. Phys. Chem. C 2021, 125, 13212.
- [3] G. F. Han, F. Li, Z. W. Chen, C. Coppex, S. J. Kim, H. J. Noh, Z. Fu, Y. Lu, C. V. Singh, S. Siahrostami, Q. Jiang, J. B. Baek, *Nat. Nanotechnol.* 2021, 16, 325.
- [4] H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929.
- [5] T. Dai, X. Lang, Z. Wang, Z. Wen, Q. Jiang, J. Mater. Chem. A 2021, 9, 21219.
- [6] H. Tan, Q. Ji, C. Wang, H. Duan, Y. Kong, Y. Wang, S. Feng, L. Lv, F. Hu, W. Zhang, W. Chu, Z. Sun, W. Yan, *Nano Res.* **2021**, *15*, 3010.
- [7] Y. Zhang, Q. Zhang, D.-X. Liu, Z. Wen, J.-X. Yao, M.-M. Shi, Y.-F. Zhu, J.-M. Yan, Q. Jiang, *Appl. Catal., B* **2021**, *298*, 120592.
- [8] A. J. Medford, M. C. Hatzell, ACS Catal. 2017, 7, 2624.
- [9] B. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean, L. C. Seefeldt, Chem. Rev. 2014, 114, 4041.
- [10] T.-N. Ye, S.-W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, H. Hosono, J. Am. Chem. Soc. 2020, 142, 14374.
- [11] S. Reichle, M. Felderhoff, F. Schüth, Angew. Chem., Int. Ed. 2021, 60, 26385.
- [12] R. Fu, Z. Pan, X. Mu, J. Li, Q. Zhan, Z. Zhao, X. Mu, L. Li, J. Mater. Chem. A 2021, 9, 22827.
- [13] Z. Zhang, X. Huang, H. Xu, ACS Appl. Mater. Interfaces 2021, 13, 43632.
- [14] C. He, X. Li, D. Qiu, Y. Chen, Y. Lu, X. Cui, Appl. Surf. Sci. 2021, 556, 149753.
- [15] C. He, X. Li, X. Chen, S. Ma, X. Yan, Y. Zhang, S. Zuo, C. Yao, Appl. Clay Sci. 2020, 184, 105398.
- [16] P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen, J. Low, R. Long, W. Liu, P. Ding, Y. Wu, Y. Xiong, J. Am. Chem. Soc. 2020, 142, 12430.
- [17] N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2018, 140, 9434.
- [18] J. Wang, J. Liang, P. Liu, Z. Yan, L. Cui, L. Yue, L. Zhang, Y. Ren, T. Li, Y. Luo, Q. Liu, X.-E. Zhao, N. Li, B. Tang, Y. Liu, S. Gao, A. M. Asiri, H. Hao, R. Gao, X. Sun, *J. Mater. Chem. A* **2022**, *10*, 2842.
- [19] B. Yang, W. Ding, H. Zhang, S. Zhang, Energy Environ. Sci. 2021, 14, 672.
- [20] R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. M. Sankaran, J. N. Renner, Sci. Adv. 2019, 5, aat5778.
- [21] Y. Gorbanev, E. Vervloessem, A. Nikiforov, A. Bogaerts, ACS Sustainable Chem. Eng. 2020, 8, 2996.
- [22] Y. Bai, J. Lu, H. Bai, Z. Fang, F. Wang, Y. Liu, D. Sun, B. Luo, W. Fan, W. Shi, Chem. Eng. J. 2021, 414, 128773.
- [23] J. Zheng, Y. Lyu, J.-P. Veder, B. Johannessen, R. Wang, R. De Marco, A. Huang, S. P. Jiang, S. Wang, J. Phys. Chem. C 2021, 125, 23041.
- [24] P. M. Chalk, J.-Z. He, M. B. Peoples, D. Chen, Soil Biol. Biochem. 2017, 106, 36.
- [25] A. W. Tricker, K. L. Hebisch, M. Buchmann, Y.-H. Liu, M. Rose, E. Stavitski, A. J. Medford, M. C. Hatzell, C. Sievers, ACS Energy Lett. 2020, 5, 3362.
- [26] C. Bolm, J. G. Hernández, Angew. Chem., Int. Ed. 2019, 58, 3285.
- [27] C. A. Latorre, J. E. Remias, J. D. Moore, H. A. Spikes, D. Dini, J. P. Ewen, Commun. Chem. 2021, 4, 178.
- [28] J.-L. Do, T. Friščić, ACS Cent. Sci. 2016, 3, 13.
- [29] T. Xin, C. C. Cummins, ACS Cent. Sci. 2023, 9, 1575.

ADVANCED SCIENCE NEWS

www.advancedsciencenews.com

- [30] Y. Zhang, Y. Wang, X. Yang, L. Zhao, R. Su, J. Wu, D. Luo, S. Li, P. Chen, M. Yu, Q. Gong, R. Zhu, Adv. Mater. 2022, 34, 2107420.
- [31] Y. Chen, Q. Li, W. Wang, Y. Lu, C. He, D. Qiu, X. Cui, 2D Mater. 2021, 8, 044012.
- [32] P. F. M. de Oliveira, R. M. Torresi, F. Emmerling, P. H. C. Camargo, J. Mater. Chem. A 2020, 8, 16114.
- [33] F. Zhai, T. Xin, M. B. Geeson, C. C. Cummins, ACS Cent. Sci. 2022, 8, 332.
- [34] Z. Chen, X. Zhu, J. Yang, J. A. M. Mercer, N. Z. Burns, T. J. Martinez, Y. Xia, Nat. Chem. 2020, 12, 302.
- [35] G. Dayaker, D. Tan, N. Biggins, A. Shelam, J.-L. Do, A. D. Katsenis, T. Friščić, *ChemSusChem* 2020, 13, 2966.
- [36] H. Zhang, C. E. Diesendruck, Angew. Chem., Int. Ed. 2022, 61, 202115325.
- [37] T.-W. Kwon, B. Song, K. W. Nam, J. F. Stoddart, J. Am. Chem. Soc. 2022, 144, 12595.
- [38] R. Eckert, M. Felderhoff, F. Schüth, Angew. Chem., Int. Ed. 2017, 56, 2445.
- [39] G. Mulas, R. Campesi, S. Garroni, F. Delogu, C. Milanese, *Appl. Surf. Sci.* 2011, 257, 8165.
- [40] G.-F. Han, P. Zhang, P. Scholzen, H.-J. Noh, M. Yang, D. H. Kweon, J.-P. Jeon, Y. H. Kim, S.-W. Kim, S.-P. Han, A. S. Andreev, G. Lang, K. Ihm, F. Li, J.-B. d'Espinose de Lacaillerie, J.-B. Baek, Angew. Chem., Int. Ed. 2022, 61, 202117851.
- [41] G. Heinicke, K. Meyer, U. Senzky, Z. Anorg. Allg. Chem. 1961, 312, 180.
- [42] Peter, A. Thiejen, G. Heinicke, N. Bock, Z. Chem. 1974, 14, 76.
- [43] C. He, Q. Li, X. Zhang, Y. Lu, D. Qiu, Y. Chen, X. Cui, ACS Sustainable Chem. Eng. 2022, 10, 746.
- [44] Q. Li, L. He, C. Sun, X. Zhang, J. Phys. Chem. C 2017, 121, 27563.
- [45] N. Shan, V. Chikan, P. Pfromm, B. Liu, J. Phys. Chem. C 2018, 122, 6109.

[46] Y. Abghoui, A. L. Garden, J. G. Howalt, T. Vegge, E. Skúlason, ACS Catal. 2016, 6, 635.

www.small-journal.com

- [47] Y. Abghoui, E. Skúlason, Catal. Today 2017, 286, 69.
- [48] B. Hu, M. Hu, L. Seefeldt, T. L. Liu, ACS Energy Lett. 2019, 4, 1053.
- [49] N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G. Zheng, Nat. Commun. 2019, 10, 2877.
- [50] C. Li, M. Gu, M. Gao, K. Liu, X. Zhao, N. Cao, J. Feng, Y. Ren, T. Wei, M. Zhang, J. Colloid Interface Sci. 2022, 609, 341.
- [51] J. Wang, W. Lin, Y. Ran, J. Cui, L. Wang, X. Yu, Y. Zhang, J. Phys. Chem. C 2020, 124, 1253.
- [52] X. Bi, G. Du, A. Kalam, D. Sun, Y. Yu, Q. Su, B. Xu, A. G. Al-Sehemi, *Chem. Eng. Sci.* 2021, 234, 116440.
- [53] S. Zhu, L. Xiao, M. B. Cortie, Vib. Spectrosc. 2016, 85, 146.
- [54] C. Yao, R. Wang, Z. Wang, H. Lei, X. Dong, C. He, J. Mater. Chem. A 2019, 7, 27547.
- [55] Y. Bo, H. Wang, Y. Lin, T. Yang, R. Ye, Y. Li, C. Hu, P. Du, Y. Hu, Z. Liu, R. Long, C. Gao, B. Ye, L. Song, X. Wu, Y. Xiong, *Angew. Chem., Int. Ed.* **2021**, *60*, 16085.
- [56] L. R. Winter, B. Ashford, J. Hong, A. B. Murphy, J. G. Chen, ACS Catal. 2020, 10, 14763.
- [57] Y. Zhang, X. Chen, S. Zhang, L. Yin, Y. Yang, Chem. Eng. J. 2020, 401, 126033.
- [58] Q.-Y. Liu, H.-D. Wang, R. Tang, Q. Cheng, Y.-J. Yuan, ACS Appl. Nano Mater. 2021, 4, 8674.
- [59] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, *Science* 2001, 293, 269.
- [60] Z. Ding, M. Sun, W. Liu, W. Sun, X. Meng, Y. Zheng, Sep. Purif. Technol. 2021, 276, 119287.
- [61] E. Stoyanov, F. Langenhorst, G. Steinle-Neumann, Am. Mineral. 2007, 92, 577.