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1. Introduction

It is well-known that in 1900 Hilbert proposed a list of 23 mathematical problems at the Second International Congress
of Mathematicians in Paris for being solved during the 20th century [13]. After 120 years, the 16th problem of the list is
still open. The second part of Hilbert’s 16th problem is to estimate the maximum number H(n) of limit cycles in planar
polynomial differential systems of degree n, and to investigate their distributions. It is still unknown whether H(n) exists or
not for n > 2. For more informations about the research progress of Hilbert’s 16th problem, see review articles [14,16] and
the references cited therein.

One restricted version of the Hilbert’s 16th problem is to study the number of limit cycles in the following near-
Hamiltonian system

’.‘:Hy(XvJ’)'f‘gf(va,fs), y:_HX(X’y)+8g(X!y’8)v (11)

where H(x,y), f(x,y,8) and g(x,y,8) are real polynomials in (x,y) € R%, ¢ > 0 is small, § ¢ D c R™ is a vector parameter
with D compact.

One important method for the study of limit cycle bifurcations in system (1.1) is the Abelian integral or Melnikov function
given by

M(h, 8) = 75 gdx — fdy, (12)

where L, is a continuous family of closed ovals defined by H(x,y) = h, hc < h < hs. If M(h,§) # 0, the number of limit
cycles in system (1.1) can be estimated by the the number of isolated zeros of M(h, ) in h. The problem of studying zeros
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of M(h,§) is called the weak Hilbert's 16th problem, which was posed by Arnold in [1]. For the applicaiton of Melnikov
function to study the number of limit cycles, see survey papers [11,15] or books [4,12].

Under small perturbations in (1.1), limit cycles could be produced not only from the family of periodic orbits {L, : he <
h < hg}, but aslo from its boundaries, which could be a center or homoclinic/heteroclinic loops defined by H(x,y) = h. or
H(x,y) = hs. The number of limit cycles bifurcating from a center or homoclinic/heteroclinic loops can be investigated by
finding the zeros of M(h, §) in the interval (hc, hs) near its endpoints through the asymptotic expansions of M(h, §) at h = h,
or h = h;.

There are lots of research results on bifurcation of small limit cycles from centers, for instance see [3,7,10,19-21,23]. The
Melnikov function M(h, §) is analytic near an elementary center. In [10], a computationally efficient algorithm is provided
for the computation of the coefficients of the asymptotic expansion of M(h, §) near an elementary center. Another method
equivalent to expanding M(h, §) near an elementary center is using the linear terms of focus values, which was developed
in [3]. Analysis on higher order terms of focus values was also introduced in [7,19] for finding the bifurcation of limit cycles
from a center.

The asymptotic expansions of M(h, §) play an important role in the study of bifurcations of limit cycles near heteroclinic
loops, for instance see [2,9,17,18] and the references cited therein. For heteroclinic loops through hyperbolic saddles, in
the literature we only find the formulas of the first four coefficients for the corresponding asymptotic expansion of M(h, §),
which were obtained in [9]. The expansions of M(h, §) near heteroclinic loops through a saddle and a cusp were investigated
in [2,17,18].

In this paper, we mainly focus on the study of limit cycles produced around heteroclinic loops through hyperbolic sad-
dles. We shall present an approach for the computation of more coefficients in the corresponding asymptotic expansion
of M(h, §). Moreover, in order to find more limit cycles in (1.1), we shall investigate the bifurcation of limit cycles near a
heteroclinic loop together with the bifurcation of small-amplitude limit cycles from an elementary center.

We suppose that the Hamiltonian system

X:Hy(xd’); y:_HX(X’y) (13)

has a family of periodic orbits L, defined by H(x,y) = h, h € (h¢, hs) £ J, with two boundaries: an elementary center C =
(X0,Y0) as the inner boundary and a heteroclinic loop Ls as the outer boundary. The heteroclinic loop Ls consists of n
hyperbolic saddles S; = (x;,¥;), i=1,2,...,n, and n heteroclinic orbits L;, i=1,2,...,n, connecting them. Suppose h; =
H(xg,Yo) and Ls is defined by H(x,y) = hs.

Then for system (1.1), M(h, §) has an expansion of the form at h = h,

M(h.8) = b;(d)(h—ho)*!, 0<h—hc <1, (1.4)
j=0
with
bo(8) = Tobo(8), bo(8) = (fi +8)(C.9), (15)

where Ty > 0 is a constant. Theoretically, the maximum number of small limit cycles bifurcating from the center C can be
determined by the study of the independence of the coefficients b;’s in (1.4). The asymptotic expansion of M(h, §) at h = hs
has the following form

M(h,8) = > (c2j(8) + C2j11(8) (h — hs) In|h — hs|) (h — hs)!
j=0
co(8) +c1(8)(h—hs)In|h — hs| +c3(8)(h — hs) +c3(8)(h — hs)%In |lh—hs|+..., 0<hs—h«1.(1.6)

This paper is organized as follows. In Section 2, we shall present our method to compute the coefficients c;'s of the
expansion of M(h, §) in (1.6). Then using more coefficients c;’s in (1.6) and the coefficients b;’s in (1.4), we give a way to
find more limit cycles for (1.1). In Section 3, an example is provided to illustrate our method.

2. Main results

Before we present our method for computing the coefficients of the asymptotic expansion of M(h,§) in (1.6), we first
give the formulas for its first four coefficients, which were presented in [9].
From Han et al. [9], for ¢y(8) and ¢;(§) in (1.6) we have

co(8) = ;/Ling—fdy, 2.1)
. . 1
c1(8) = Zﬁ (5i,8), with ¢(5;,6) = —m(fx +8)(5:. 8). (2.2)

i=1
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where £; are the real eigenvalues of the linearized system of (1.3) at S;. When ¢;(5;,8) =0, i=1,...,n, c;(§) and c3(3)
are given by

n
@(®) = § Ue+gde =3 [ g, (23)
s i=1 i
n
c3(8) =) (S 8). (2.4)
i=1
with
-1 1
(5, 6) = ST { (=3a30 — ba1 + ar2 + 3bos) — I[Qboz + a11)(3hos — h21) + (2az0 + b11) (3h30 — h12)]}, (2.5)
1 1 1
where h;;, a;; and b;; are the coefficients of the series expansion of the following three new functions
H(u,v) = hs + %(v2 —u)+ Y hyu'v, (2.6)
i+j>3
Fuv.8)=>" auiv/, gwv.8) =" bjuv/, (2.7)
i+j>0 i+j=0

which are obtained from ﬁ(u, v) =H(x,y) and
Fv.8) =tnf(x,y.8) — t1ng(x,y.8), &, v,8) = —t f(X,¥,8) + tng(x,y,8).
By substituting the variable change
X=tnu+pV+X;, y=bDiu+inv+y, (2.8)
with tq1tyy — taty; = 1. By (2.8), system (1.1) is transformed into
U=Huv)+efwvs), v=—H(uv)+eduuvs),
where H(u,v), f(u,v,8) and g(u, v, 8) are given by (2.6) and (2.7).

Theorem 2.1. For system (1.1), we assume by =0 and ¢{(5;,8) =0, i=1,...,n in (1.4) and (1.6). Further suppose there exist
analytic functions P(x,y,8) and Q(x,y, 8) satisfying the following equation

fe+8 =Hex.y)P(X,y,8) + Hy(x,y)Q(x.y,8), (xy)eU2 ] Ly (2.9)
he<h<hs

Then we have
Ty - -
bi=bi. bi=(R+Q)CH).

1

G0) = 3 1 a0, 6(5.8) =~ (Bt QS 0) (210)
i=1 !

When ¢,(S;,6)=0,i=1,...,n, we get

1 1¢
ca®) =5 f Bt @de =53 [ B+,
s i=1 i

G5(8) = 3 2.65.9), 211)
i=1

where
b
2[Ail
if by the variable transformation (2.8), ﬁ(u, v) = H(x,y) satisfies (2.6), and
Fuv) =Py, 8) - tQx.y.8) = Y Gu'v/,
i+j=0

§u,v) = —tnP(X,y,8) + tnQ(x,y,8) = Y bju'v).

i+j>0

03(51,8) = {(—3530 — by + @12 + 3bo3) — %[(2502 + @11) (3Bho3 — ha1) + (2830 + b1 ) (3h3o — hu)]}’ (2.12)
1
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Proof. Since by =0 and ¢(5;,8) =0, i=1,...,n, by (14) and (1.6), it is easy to get

oM

= 2by(h — he) +3by(h — he)? + 4bs(h — he)® + - - (213)
forO<h-hc«1, and

oM

= c3 +2c3(h— hg) In|h — hg| + (c3 +2¢c4) (h — hs) + 3cs5(h — hs)*In|h — hg| + - -- (2.14)

forO<hs—h«1.
It is proved in [8] that for (1.2) the partial derivative of M(h, §) with respect to h has the following form

oM
T (16 =§ (v ga. (215)
oh L

Then by (2.9) and (2.15) we have

T = (RO yIPGY.)+ Hy )00 y.5)de

:f<u&y3mx_mxyamyéﬁmﬁy (2.16)
Ly
Expanding the new Melnikov function 1\71(11, 8) yields

M(h, 8) = bo(8)(h — he) + by (8)(h — he)® + - - (217)
for 0 <h-h:« 1, and

M(h) = G(8) + & (8)(h — hs) In |[h = hs| +&(8)(h— hs) + & (8)(h — hs)?In|h — hg| + - - (2.18)

for 0 < hs — h « 1. Comparing the two expansions of I\71(h, &) above with (2.13) and (2.14) respectively, one obtains

b] =I~Jo/2, C2=€0, C3=E1/2, C4=(52*C3)/2, C5=53/3.
Then we can derive (2.10), (2.11), (2.12) by using (1.5), (2.2), (2.3), (2.4) and (2.5) to compute the coefficients by, ¢, j=
0,1,2,3 for M(h, §). The proof is completed. O

Note that from (2.16) the derivative function dM/dh can be written in the form of Melnikov function I\7I(h) when
(2.9) holds. If we can use Theorem 2.1 to compute the coefficients ¢4 and Cs for 1\71(h), then we can derive formulas for
the coefficients cg and c; for M(h, §) by comparing the expansion (2.18) with (2.14).

Next, basing on this idea we shall present the formulas of ¢z and ¢; in (1.6). For M(h), by Theorem 2.1 we assume
by = ¢ (5;,8)=0, j=1,...,n, and that there exist analytic functions P (x,y,d) and Qi (x,y,d) such that

Pe(x,y.8) + Q(x,y.8) = Hx(x, y)P1(x.y, 8) + Hy(x, y)Qi (x,y.8), (x,y) eU. (2.19)
Then by Theorem 2.1 we derive

= T
1= 5 (P + Q1)) (C. ),

1

. 1. R
C3(8) = i ZC] (Si, 8), C1 (Si, 5) = _m

i=1

(Prx + Q1) (S:. 8). (2.20)
When ¢,(5;,8) =0,i=1,...,n, for ¢, and &5 we get

&(®) = (Pt @)t = Y- [ (P,
s i=1 i

65(5) = 3 2 65(5.9) (221)
i=1

with
2[Ail
where &3(S;. ) is obtained by computing ¢3(S;, §) with respect to H(x, y). Pi(x,y,8) and Q;(x,y.§) by the variable transfor-
mation (2.8), and we have H(u, v) = H(x, y) satisfying (2.6) and
taP1 (%, Y, 8) — t12Q1 (%, ¥, 8) = Z au'v!,
i+j>0

~tPI (x5, 8) + t2Q(x,y.8) = Y bjulvl.

i+j>0

A ~ A~ . ~ 1 ~ ” ~ A~
€3(5;,68) = {(—3‘130 — by + di2 + 3bg3) — x[(Zboz +d11) (3ho3 — hy1) + (2d0 + b11) (3h3g — h12)]},
1
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Comparing the two expansions of 1\71(11, 8) in (2.17) and (2.18) with (2.13) and (2.14) respectively, one obtains
3b2 = B], Cs + 3C5 = 54, 4c; = 55.
Then we have the following theorem.
Theorem 2.2. Suppose for system (1.1), when by =b; =0, ¢1(5;,8) =¢1(5;,8) =0, i =1,...,n, there exist analytic functions
P(x,y,8), Q(x,y,8), Pi(x,y,8) and Q; (x,y, 8) satisfying (2.9) and (2.19). Then we have
1- 1. 1. 1.
b, = §b17 =36 C6= §C4|61(5,,5)=o, c7 = 1C5|51<s,-,s>=ov

where by, &, & and & are given in (2.20) and (2.21).

By computing more coefficients in (1.4) and (1.6), we can find more zeros of M(h,&§) in h near the endpoints of the
interval J, which imply more limit cycles produced around the center C and the heteroclinic loop Ls for system (1.1). We use
(i, j, k) distribution to represent i small-amplitude limit cycles bifurcating from the center C, k limit cycles bifurcating from
the heteroclinic loop Ls, and j limit cycles produced between these two groups of limit cycles for system (1.1).

Let [x] denote the integer part of x. For finding limit cycles in system (1.1), we have the following theorem.

Theorem 2.3. If for some 85 € R™ and two integers k; and k, we have

b,’((Sg):O, i=0,1,...,k1—1, Cj(80)=O, jZO,l,...,kz—l,

8(bo,b],...,bkl,l,Co,CL...,Ck2,1) (222)

K
fan 301, 0m)

(80) = ki + k2.

and
12 (~1)ERDb, (89)cy, (89) # 0, where & (k) = [%]

and the function irem(k,, 4) computes the integer remainder of k, divided by 4, then the system (1.1) has ky + ko, + 1 (or ki +k3)
limit cycles as u < 0 (or > 0) for some (&, 8) near (0, 8g), with (kq, 1, ky) distribution (or (kq, 0, ky) distribution).

Proof. Note that when 0 < hs — h « 1, for the integer k, = 4k + 1, where | = irem(k;, 4), the term with the coefficient Ck,
in the asymptotic expansion of M(h, §) (1.6) has

(h—hg)?k > 0, if I = 0;
(h—hs)*+'In|h — hg| > 0, if | = 1;
(h—hg)2k+1 <0, if [ =2;
(h—hs)?+2In|h — hs| <0, if | = 3.
Here we only show the proof for the case of | = 1 with by (§p) <0, ¢, (89) > 0. Then & (kz) =0 and u = by, (80)cy, (Jo) < O.

The other cases can be similarly proved.
In this case, from (1.4) and (1.6) we have

M(h, 8o) = by, (80) (h—ho)k* ! ... <0
for 0 <h-h: « 1, and
M(h, 8o) = ¢, (80) (h — hs)** 1 In|h — hs| +--- > 0

for 0 < hs — h « 1. Then the function M(h, ) has at least one zero hg(8) €] in h, having an odd multiplicity, for § near §.
By (2.22) we can take bo, by, ..., by, _q, and co, ¢y, ..., Ct,_q as free parameters for § near §o. We vary the values of
Cky—1» Cky—2> ---» €1 and cq in turn such that

1 =1 > Cpy2 > -+ > C4ju3 > Cqj2 > —Cqj1 > —Caj--- > —C1 > —Co > 0.

By this way, we can change the sign of M(h,§) five times for O < hy —h « 1. Then we get k, simple zeros h;(8), i=
1,2,...,ky, of M(h, §) near hs for § near §y, with the zero hy(8§) of M(h, §) still existing.
Similarly, we can vary the values of by, _1, by, 5. ..., by and bp in turn such that

13> by, 1> =bi, 2> by 3> —b, 4>+ > 0.

Then the sign of M(h,§) is changed k; times for 0 < h —h. « 1, and M(h,d) can have k; simple zeros near h = h. for
|6 — 8ol « 1, with the zeros h;(§), 0 <i < ky, still existing.

Therefore, when @ < 0 and irem(k,, 4) = 1, for § near §y system (1.1) can have k; small-amplitude limit cycles appearing
around the center C, k, limit cycles appearing near the heteroclinic loop Ls, and another one limit cycle between these two
groups of limit cycles. This completes the proof. O
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3. Limit cycles near a two-saddle loop

The number of limit cycles bifurcating from a heteroclinic loop with two hyperbolic saddles (two-saddle loop) is investi-
gated in [6,22,24,5]. Gavrilov and lliev [6] proved that the cyclicity of a two-saddle loop in a perturbed quadratic Hamilto-
nian system is less than or equal to 3. As an application of Theorems 2.1, 2.2 and 2.3, we shall study the bifurcation of limit
cycles near a two-saddle loop in a cubic Hamiltonian system under small perturbations.

Consider the following near-Hamiltonian system

X=y+ef(xy.8), y=-x+x+6eg(xy9), (3.1)
where
fx.y.8) = Z a;ix'y’, gx,y,0) = Z bijx'y’, (3.2)
i+j=0 i+j=0

and ¢ is a parameter vector consisting of all the coefficients a;;’s and b;;'s in (3.2).
The Hamiltonian function is given by

HY) = 562 43 - o 33)

It is easy to see that the corresponding Hamiltonian system has an elementary center C = (0, 0) and two hyperbolic saddles
S1 =(-1,0), S, = (1, 0), with two heteroclinic orbits L; and L, connecting them, where

1 1
Li:y=—0-x%), Li:y=—+=(1-%%, |x|<1.
11y ﬁ( 2y=-"75 ). Xl
The family of periodic orbits around the center C are given by L, c {(x,y) e H(x,y) =h, h € (0, %)} with the heteroclinic
loop Ls =Ly ULy U{Sy,S;,} as the outer boundary.

For system (3.1), the Melnikov function M(h) is given by

M(h. 8) :fi g(x,y,8)dx — f(x,y,8)dy. (3.4)

In order to apply Theorems 2.1 and 2.2, we need to find analytic functions P(x,y, §) and Q(x, y, §) satisfying (2.9) for system
(3.1). Let F(x,y,6) = fx(x,y.8) +8y(x,y. 8). Then for polynomial F(x,y, ) with F(C,8) = F(51,8) =F(S5,,8) =0, it is easy to
verify that the following two polynomials

_ F(x.0) _Fx.y) - F(x.0)

P(vas(s) X—X3 ) Q(xvyss) f? (3'5)

satisfy (2.9).

System (3.1) with some polynomial perturbations of degree 7 was studied in [22], where four limit cycles are found near
the loop Ls including one alien limit cycle. Here because of the symmetry of the unperturbed system of (3.1), we study the
number of limit cycles in (3.1) with general polynomial perturbations of degree n =5,7,9. We have the following theorem.

Theorem 3.1. With proper perturbations, system (3.1) can have 4 limit cycles with (1,0,3) distribution for n = 5; 6 limit cycles
with (1,0,5) distribution for n = 7; 9 limit cycles with (2,1,6) distribution for n = 9.

By (3.2) and (3.4), the Melnikov function M(h) can be rewritten as

n-1 .
s = i+1
M(h, 8) = 7§ > byiyi*ldx, where by = Sty +bij. (3.6)

hitj=0

By (3.3), all the periodic orbits L,, h € (0, 1/4) are symmetric with respect to the x-axis and y-axis. Then we can get

% xiy/*1dx = 0, when eithor i or j is odd.
LI!

Then M(h, §) can be further simplified into the form

M(h, §) =5§ &(x,y, 8)dx, (3.7)
where
ieven jodd o
gx.y.8) = Y > byl (3.8)

O<i<n 1<j<n-i

By (3.6), we can take the coefficients Bij's as free parameters.
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Note that M(h, §) in (3.7) is the first order Melnikov function of the following near-Hamiltonian system

X:Hy(va’)a y:_HX(x’y)+8g(x7y)v (39)

with H(x,y) given by (3.3). To prove Theorem 3.1, we only need to study the asymptotic expansions of M(h, §) in (3.7) at
h=0and h=1/4.

Proof. Firstly, we consider the case of n = 5. By (3.8) g(x,y, §) has the following form
g(x..8) = bo1y + b2 1x%y + bo 3y® + ba 1x*y + by 332y + bo 5y°.
For the Melnikov function (3.7), by (1.5) and (2.1) we obtain

bo(8) = —bo1, co(8) = 3;(?5

Noting that the eigenvalues of the unperturbed system of (3.9) at both saddles S; = (—=1,0) and S, = (1,0) are ++/2, by
(2.2) we have

(1155b0 1+ 231b2 1+ 396b0 3+ 99b4 1+ 44b2 3+ ]GObO 5) (310)

€1(51,8) =¢1(52,8) = —g(t_’o.l +bo1+ban),
and

c1(8) = c1(51.8) +¢1(52.8) = —v2(bo1 + b1 + ba1). (3.11)
To compute ¢, (8) and c3(8), we take ¢1(S1,6) = ¢1(S2,6) = 0. By (2.3) we obtain

0(8) = f & (x.y. 8)dt :f de
42
= ﬁ( 105D, 1 + 105bg 5 + 21by 5 — 140b4 1 + 60by 5). (3.12)
For by, c3 and ¢4, we need to find P(x,y,8) and Q(x,y, ) satisfying
8y(x,y,8) = Hx(x,y)P(x.y,8) + Hy(x,y)Q(x. . 8). (3.13)
Setting bo(8) = ¢1(8) = 0 yields by 1 = 0, by 1 = —b4 1, under which by (3.5) we have
Pay.8) = 8000 _
8) — 0,6 = = =

Qx,y,9) = &(*y.9) ~&(x0.9) _ 3bo,3y + 3ba,3x%y + 5bo 5y°.

y
Then by Theorem 2.1, we have

b1 (8) = (Pe+Qy)(C,8) = 3bg3 — ba 1, 1)

2
3(8) = % Z |: —= (B + Qy) (Soo- 5):| ~2(b2.1 +3bo 3 + 3b.3).

By (3.10), (3.11), (3.12) and (3.14), solving by(8) = co(8) = ¢1(8) = c2(8) = 0 yields

" - S - 1. 15- - 145
bO.l = 07 b2,1 = _b441, b0,3 = §b441 - ﬁbO,S: b2,3 = _ﬁbO,Sv

and

b1(3)——*b053ﬁ0 c3(8) = fbossﬁ()

when by 5 # 0. Therefore, by Theorem 2.3 the system (3.1) can have three limit cycles near Ls; and one small-amplitude limit
cycle near C.
Next, we study the case of n = 7. By (3.8) the polynomial g(x,y, §) is given by

g(x,y.6) = BO.ly + Bz,lxzy + 50.3}’3 + 54.1X4y + 52,3X2y3 + Bo,sys + Bs,lxsy + 54,3X4y3 + Bz,sxzys + Bo.7y7~

By (1.5), (2.1) and (2.2) we have by = by 1, and
42
45045
+ ‘160b2‘5 + ‘156b4‘3 + 715’)5,1 + 896b0y7),

c1(8) = c1(51,8) +¢1(S2,8) = —v2(bo 1 + byt + ba1 + be 1),

Co (8) (15015b0 1+ 3003b2 1+ 5148b0 3+ 572b2 3+ 1287b4 1+ 2080b0 5

7
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where ¢1(S1,8) =¢1(52,8). When ¢;1(51,8) =¢1(52,8) =0, by (2.3) we derive

() = % (—3465b, 1 + 3465bg 3 + 693b; 3 — 4620b4 1 + 1980bg 5 + 220b, 5 + 297b4 3 — 5313bg 1 + 1120bg 7).

Similarly, for _1_91, c3(8), c4(8) and c5(8). we need to compute P(x,y.§) and Q(x.y. ) satisfying (3.13). Setting by(8) =
c1(8) =0 yields by 1 =0, by 1 = —bs 1 — be 1, under which by (3.5) we have

P(x,y,&) = —(1_34,1 +I_96_‘1)X—l_96,1)f3, _ _ _
Q(x,y, 5) = 3b043y + 3b2,3x2y + 5b0,5y3 + 5b2,5x2y3 + 3b4,3x4y + 7b0,7y5.
Then by Theorem 2.1, we get

b1(8) =3bo3 —ba1 — be 1, i i i i i
c3(8) = 5(€1(51.8) +€1(52.8)) = —§(3b0,3 — b4 +3by3 —4bg 1+ 3by3).

and El (51, (S) = El (Sz, 5) When El (S], 6) = 6] (52, 8) =0, by (2]1)

1 [P ) _ ) o _
c4(d) = 2% %dex = —2v2(=3by3 + 5bg 5 + 3be 1 — 4bs3 + by 5 +4bg 7).

To compute ¢5(8) by (2.11), for ¢3(S;, §) we make the following variable transformation

u =y/x4f2, V= —«‘75(2(-1— 1),

and get

~ v . 1 V2,5, 50 245 1
H(u,v) _H(—w—l,ﬁu) = 1—7(1/ —-u )—Tv _§U4’
= 1 v

uv) = —Q —— —1,v2u
Jwv) wQ< 7 )

= (54,1 + 456,1)“ + 3\4/§(l-72‘3 + 254,3)1,”/ + 5\/5(50’5 + BZ,S)“3
+%(l—72,3 + 354_3)111/2 + 10\4/252.51,131) + 6\‘7554,3111/3 + 14[)0,71,[5 + 5[72)51.131}2 + %B43UU4,
v

§(u,v) = —v2P[ —— —1,v2u
R

e - 348 7
= —/2(ba +2bs1) — (ba 1 +4bs 1)V — ébﬁ,ﬂ/z - §b6,11/3~

Then by (2.12) we get

. 3J2 - . - -
03(51,8) = —T(bzs + 5bo5 + 5by 5 — bs 1).

Similarly, for ¢3(S,, §) we make the following variable transformation
1 4
U=—y, v=-v2(x-1),
73 x-1)
and derive ¢3(S,, 8) = C3(S1, 6). Then by (2.11) we can have

1 . . V2 - - - -
() = §(C3(51, 8) +E3(5,,9)) = —T(bz,a + 5bg 5 + 5by 5 — bs 1).

NOtng that 50(8) = Co((s) =0 (8) =0 (8) = C3(8) = C4((S) =0 lmply

- - - - - 1- 1- 1+
bo1 =0, byi=—bs1—bs1, boz= §b441 + §b61 + ﬁbm,

T T A 20-
by 3 =be1—bs3— ﬁbo,% bos = §b4,3 - ﬁbo.% by s = —ﬁbo_%

and

3 642
b = ﬁbm #0, ()= Tbm #0

when 50,7 # 0. Therefore, by Theorem 2.3 system (3.1) can have five limits cycles near Ls and one small limits cycle near C
when n=7.
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Third, when n =9, g(x,y, 8) has the following form
gx.y.8) = E’o.ﬂ/ + 52,1?(2)’ + E’o.ay3 + 54_1x4y + 52,3x2y3 + BO.S.VS + BGJXGY + 54,3x4y3
+ 1_92,5?‘23/5 +bo7y” + bg 128y + 1_36,3X6y3 +ba sxty® + by 7x%y7 + 50,9y9~
Then, we also have
bo(8) = bo1. ¢1(8) = —v2(bo1 +by1 +bay +bg1 +bg 1),

42
14549535
+671840bg 5 + 230945bg 1 + 50388b4 3 + 51680b, 5 + 289408b, 5
+146965bg 1 + 19380bg 3 + 10336by 5 + 17024b, 7 + 129024bq o).
with ¢1(51,8) = ¢1(S;,8). When ¢;(51,6) = 0, we get

c(8) = % (—45045b, 1 + 45045b 3 — 60060by 1 + 9009b; 3 + 25740bg 5 — 69069bs 1

+3861b4 3 + 2860by 5 + 14560b¢ 7 — 75504bg 1 + 2145bg 3 + 780b4 5 + 1120b, 7 + 8064bq o).

c(8) = (4849845b¢ 1 + 969969b, | + 1662804bg 5 + 184756b, 5 + 415701b, ;

2 - - - - - - _
c3(8) = —g(bz.l +3bo3 +3by 3 — 3be 1 +3bs3 — 8bg 1 4 3bg 3).
We can also obtain c4(8), c5(8), cg(8) and c;(8) by calculating P(x.y.8), Q(x.y.8). Pi(x.y.6) and Q;(x,y.8) by
Theorems 2.1 and 2.2. By Theorem 2.1, when by = ¢1(S;1,8) = 0, we obtain
b1(8) = 3bo3 — ba1 — bg1 — bs1.

cs(8) = %(—10395132,3 +17325bg 5 + 10395bg 1 — 13860b, 3 + 3465b, 5 + 13860by 7

+33495bg 1 — 15939bg 3 + 1485b4 5 + 1540b, 7 + 10080bg o).
c5(8) = —7(b2,3 + 5bg 5 — be,1 4+ 5by 5 — bg 1 — 3bg 3 4+ 5by 5),
with & (Sy, 8) = 0. By Theorem 2.2, when further by = & (S;, 8) = 0, we derive

i 3 . . . B
by (8) = §(5b2,3 +120bg s — 3bs 3 — 5bs 1 — 3bs 3),

272 . - . . . .
c6(8) = %ﬁ (—15by5 + 35D 7 + 9be 3 — 20b4 5 + 7by 7 + 36bp.0).
2 - - - -
Cy ((S) = \/» (5b2‘5 + 35b0,7 — 3b613 + 35b27)

8
Solving by(8) = b1(8) = cg(8) = ¢1(8) = c2(8) = c5(8) = c4(8) = c5(8) = 0 implies
- - - - - - 1 - - -
boqi =0, by1=—-bs1—bs1—Dbg1, boz= §(b4,1 +be1+bg 1),

]

o . 5. . 63.
209 bog., baz=5bgs+ §b8.1 —bg 3 — mboa,

by3 = —5bos+be 1 +bg1 +

3. . e - - 1. 351 4248 -

bys = §b6.3 —bys5— @bo,gv bo7 = 7134,5 - mboes by7 = *ﬁbo,gs
and

- 189- 23042 -

by = ﬁbw #0, ¢(8) = —Wbo,s) #0,

when 50’9 # 0. Then by Theorem 2.3, system (3.1) can have six limit cycles near L, two small limit cycles near C, and
another one limit cycle between them when n = 9. This completes the proof. O

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Wei Geng: Investigation, Resources, Writing - original draft. Yun Tian: Conceptualization, Methodology, Writing - review
& editing, Supervision.



W. Geng and Y. Tian Commun Nonlinear Sci Numer Simulat 95 (2021) 105666
Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC NO. 11871042) and Shanghai Rising-
Star Program (No. 18QA1403300).

References

[1] Arnold VL. Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields. Funct Anal Appl 1977;11:85-92.
[2] Bakhshalizadeh A, Zangeneh H, Kazemi R. Bifurcation of limit cycles in a near-hamiltonian system with a cusp of order two and a saddle. Int ]
Bifurcation and Chaos 2016;26:1650180. (14 pages)
[3] Christopher C. Estimating limit cycle bifurcations from centers, in differential equations with symbolic computation. In: Trends Math.. Basel:
Birkhduser; 2005. p. 23-35.
[4] Christopher C, Li C. Limit cycles of differential equations. Basel: Birkhduser Verlag; 2007.
[5] Gavrilov L. On the number of limit cycles that appear under the perturbation of two-saddle cycles of planar vector fields. (Russian) Funktsional Anal
i Prilozhen 2013;47:12-27. Translation in Funct Anal Appl 2013;47:174-186
[6] Gavrilov L, lliev I. Perturbations of quadratic hamiltonian two-saddle cycles. Ann Inst H Poincaré Anal Non Linéaire 2015;32:307-24.
[7] Giné J. Higher order limit cycle bifurcations from non-degenerate centers. Appl Math Comput 2012;218:8853-60.
[8] Han M. Bifurcations of invariant tori and subharmonic solutions for periodic perturbed systems. Sci China Ser A 1994;37:1325-36.
[9] Han M, Yang ], Tarta AA, Gao Y. Limit cycles near homoclinic and heteroclinic loops. ] Dyn Diff Equat 2008;20:923-44.
[10] Han M, Yang ], Yu P. Hopf bifurcations for near-hamiltonian systems. Int J Bifurcation and Chaos 2009;19(12):4117-30.
[11] Han M. Asymptotic expansions of melnikov functions and limit cycle bifurcations. Int J Bifurcation and Chaos 2012;22:1250296. 30 pp
[12] Han M. Bifurcation theory of limit cycles. Beijing: Science Press; 2013.
[13] Hilbert D. Mathematical problems. Bull Amer Math Soc 1902;8:437-79.
[14] Ilyashenko Y. Centennial history of Hilbert's 16th problem. Bull Amer Math Soc (NS) 2002;39:301-54.
[15] Li C. Abelian integrals and limit cycles. Qual Theory Dyn Syst 2012;11:111-28.
[16] Li J. Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int ] Bifurcation and Chaos 2003;13:47-106.
[17] Moghimi P, Asheghi R, Kazemi R. On the number of limit cycles bifurcated from some hamiltonian systems with a non-elementary heteroclinic loop.
Chaos Solitons Fractals 2018;113:345-55.
[18] Sun X, Han M, Yang ]. Bifurcation of limit cycles from a heteroclinic loop with a cusp. Nonlinear Anal 2011;74:2948-65.
[19] Tian Y, Yu P. Bifurcation of ten small-amplitude limit cycles by perturbing a quadratic hamiltonian system with cubic polynomials. ] Differ Equations
2016;260:971-90.
[20] Wu Y, Li P, Chen H. Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a cubic Lyapunov system. Commun
Nonlinear Sci Numer Simul 2012;17:292-304.
[21] Yang ], Han M. Computation of expansion coefficients of melnikov functions near a nilpotent center. Comput Math Appl 2012;64:1957-74.
[22] Yang ], Xiong Y, Han M. Limit cycle bifurcations near a 2-polycycle or double 2-polycycle of planar systems. Nonlinear Anal 2014;95:756-73.
[23] Yu P, Tian Y. Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun Nonlinear Sci Numer Simul
2014;19:2690-705.
[24] Zhao L, Wang X. Saddle quantities and cyclicity of 2-polycycle. Int J Bifurcation and Chaos 2009;19:1255-66.

10


https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100013105
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0001
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0001
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0002
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0002
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0002
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0002
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0002
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0003
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0003
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0004
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0004
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0004
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0005
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0005
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0005
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0007
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0007
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0007
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0008
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0008
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0009
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0009
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0010
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0010
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0010
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0010
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0010
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0011
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0011
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0011
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0011
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0012
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0012
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0012
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0013
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0013
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0014
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0014
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0015
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0015
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0016
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0016
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0017
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0017
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0019
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0019
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0019
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0019
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0020
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0020
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0020
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0022
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0022
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0022
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0023
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0023
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0023
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0023
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0024
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0024
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0024
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0025
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0025
http://refhub.elsevier.com/S1007-5704(20)30496-2/sbref0025

	Bifurcation of limit cycles near heteroclinic loops in near-Hamiltonian systems
	1 Introduction
	2 Main results
	3 Limit cycles near a two-saddle loop
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References


