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Abstract
Gridded population and flood hazard data are crucial for flood exposure assessments. However,
current assessments incorporate uncertainties related to data selection, yet the mechanisms
through which subjective data selection propagate uncertainties in exposure models remain poorly
understood. To address this gap, this study conducted a comparative assessment of flood exposure
in China using five population datasets and five flood hazard datasets. Furthermore, it explored the
absolute and relative impacts of data uncertainties on 100 year return period flood exposure and
discussed the underlying causes. Results exhibit substantial variations in flood exposure when dif-
ferent data combinations are employed. Specifically, there is a significant difference of 333 million
individuals within the exposure range, with the highest estimate being 2.82 times the lowest one.
Overall, the exposure variation was primarily from differences in flood hazards rather than popu-
lation patterns, but their relative importance differed spatially depending on factors of slope, alti-
tude, and artificial surface coverage. Despite the differences, all 25 data combinations revealed a
disproportional larger share of population in floodplains, which was 2.28–3.49 times the share of
floodplains. These findings are significant for understanding the uncertainties of flood exposure
and can shed lights on informed policies for risk management.

1. Introduction

Flooding is among the most devastating natural haz-
ards (UNDRR 2020). In the context of climate change
and socioeconomic development, the frequency of
flood events and associated losses have shown signi-
ficant increases (Willner et al 2018, Jongman 2021).
A proximate explanation for the changing flood
risk arises from the accumulation of assets to meet
socioeconomic demands within floodplains (Du et al
2018, Rogers et al 2025). Flood exposure dynam-
ics reflect the interactions between resource devel-
opment in floodplains and flood risk mitigation,

which draws widespread attention as a critical con-
cern for global sustainability (Shi et al 2020,Ward et al
2020).

Data-driven flood exposure assessments are
largely dependent on two critical types of gridded
data: flood hazard and population (Du et al 2018,
Rogers et al 2025). With advancements in floodmod-
eling algorithms and computational capabilities, sim-
ulated flood hazard data have become increasingly
accessible (Aerts et al 2020). Meanwhile, emerging
big Earth data and dasymetric mapping techniques
have revolutionized population distribution mod-
eling, significantly enhancing both spatial precision
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and temporal resolution of exposure datasets (Rudari
et al 2015, Nardi et al 2019, Karra et al 2021, Tellman
et al 2021). This methodological paradigm shift has
facilitated the operationalization of multi-scale flood
exposures. However, the predominant reliance on
singular flood hazard dataset and/or population data-
set often obscures the compounding uncertainties
inherent to data selection (Lindersson et al 2020).
Notably, flood hazard data derived from flood mod-
els introduce endogenous uncertainties (MacManus
et al 2021), while spatial allocation algorithms for
demographical statistics introduce additional uncer-
tainties (Smith et al 2019, Láng-Ritter et al 2025).
These uncertainties could accumulate and propag-
ate through exposure analyses, thereby amplifying
the overall uncertainty in flood exposure assessment,
which could further lead to misinformed policies of
risk management (Quante et al 2024).

A growing body of literature has demonstrated
the uncertainties in flood exposure assessment. For
instance, Huang and Wang (2020) conducted a com-
parative study of U.S. flood exposure using mul-
tiple floodplain datasets (i.e. RFCON, GAR, JRC, and
FEMA), highlighting the significant impacts of flood
data selection on exposure. Bernhofen et al (2021)
used a model-independent geomorphological river
flood susceptibility map to estimate exposed pop-
ulation and found the river threshold plays a key
role in determining the exposure. Bernhofen et al
(2022) evaluated the applicability of global data-
sets for flood exposure assessment in countries like
Colombia, England, Ethiopia, India, and Malaysia
and uncovered substantial divergence under differ-
ent datasets. Moghim et al (2023) compared the
simulation results of multiple models (HEC-RAS
and LISFLOOD-FP) at watershed scales and found
that both model selection and model parameter
settings significantly affect flood hazard outcomes.
Lindersson et al (2021) compared a hydrogeomorphic
floodplain map (GFPLAIN) with two flood hazard
maps (JRC and GAR) and found the data consistency
was influenced by climatic humidity, river volume,
topography, and coastal proximity.

Regarding impacts of the selection of popula-
tion data on flood exposure assessments, Hinkel et al
(2021) found that different population data between
LandScan and GRUMP could cause variation in
exposed population by a factor of 1.7. Smith et al
(2019) evaluated the impact of different population
datasets on flood exposure in countries like Ghana,
Haiti, Mexico, and Sri Lanka, and found variations
in flood exposure between the population datasets
of HRSL, LandScan, and WorldPop. Building on
the identified uncertainty cascades in exposure ana-
lysis, Smith et al (2019) further advocated the imple-
mentation of uncertainty-aware metrics in flood
management policy instruments. Similarly, Mohanty

and Simonovic (2021) used population datasets of
WorldPop, GPW, LandScan, and GHS to compare
flood exposure assessments in Canada, revealing sig-
nificant discrepancies in exposure estimates. These
studies suggested that the selection of flood haz-
ard and population data could bring about signi-
ficant uncertainties for flood exposure assessments.
However, they have not examined the effects of dif-
ferent dataset choices on flood exposure in China, nor
have they analyzed the underlying mechanisms driv-
ing these impacts.

China ranks among the most flood-prone
countries worldwide, characterized by its
unique monsoon-driven extreme precipitation
regimes, complex riverine systems, and populated
floodplains—all contributing to its status as a hotspot
for flood risk assessments (UNDRR 2020). In recent
years, flood hazards have shown an increasing trend
in China (IPCC 2022). Meanwhile, China has been
undergoing a rapid rural-urban transition, which is
likely contributing to increased flood exposure (Du
et al 2018, Rentschler et al 2023, Bai and Shi 2025).
Nevertheless, current research exhibits persistent epi-
stemic shortcomings in understanding the uncer-
tainties of flood exposure therein. Notably, while
Aerts et al (2020) represent an exception through the
comparative analysis of flood dataset interoperabil-
ity in flood exposure assessment, their study remains
constrained by a critical issue: uncertainties from
intertwined effect of flood hazards and population
patterns are not systematically assessed.

Therefore, the interplay between flood hazard and
population data requires rigorous uncertainty quan-
tification to inform evidence-based flood risk gov-
ernance in China. To do so, this study analyzes uncer-
tainties in flood exposure under the joint influence
of different population and flood datasets. It com-
pares the relative importance of population and flood
hazard dimensions in influencing flood exposure and
investigates the factors potentially contributing to
these uncertainties. Such an analysis could provide
a scientific basis for understanding flood risk and
achieving sustainable development goals.

2. Data

Five representative datasets of flood hazards were
collected to compare differences in flood exposure
(table S1). The flood hazard datasets include GAR
(Rudari et al 2015), GLOFRIS (Ward et al 2013),
CAMA-UT (Yamazaki et al 2011), JRC (Dottori et al
2016), and ECMWF (Balsamo et al 2015), which have
been widely applied in flood exposure assessment
and flood risk management (Leyk et al 2019, Li et al
2025). These datasets were representative outcomes
derived from different flood simulation methods, cli-
mate data, and modeling scales. For example, the
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GAR was based on hydrological observation data for
flood simulation, while the other datasetsmainly used
climate reanalysis data (Bernhofen et al 2018). The
modeling scales were also different across these data-
sets (supplementary data: table S1), which potentially
impacted the flood inundation results (Bernhofen
et al 2021).

Similarly, five population datasets were collected
for the same year (2010) to ensure data comparabil-
ity (table S2), including the WorldPop (Tatem 2017),
LandScan (Lebakula et al 2025), GPW (Gridded
Population of the World v4.11) (Doxsey-Whitfield
et al 2015), China Grid Population Distribution
Dataset (hereafter referred to as CnPop) (Wang and
Wang 2022), and the Point of Interest-based popu-
lation data (hereafter referred to as PoiPop) (Ye et al
2019). Theywere representative outcomes of different
demographic and auxiliary data, as well as different
methods of population dasymetric mapping (Leyk
et al 2019). For instance, the GPW4 spatialized pop-
ulation uses an area-weighted method, the LandScan
employs a dasymetricmodel based onmachine learn-
ing to disaggregate population data, and the CnPop
allocates population numbers using a multi-factor
weighting approach. The WorldPop and the PoiPop
use random forests for population disaggregation,
with the distinction that theWorldPop leveraged vari-
ous auxiliary variables (e.g. slope, impervious surface,
nighttime light), while the PoiPop utilizes POI data
and multi-source remote sensing data to disaggregate
county-level census data to geographic grids.

3. Methods

3.1. Assessing model agreement index (MAI)
among flood datasets
To further investigate the discrepancies among flood
hazard datasets,MAI is employed following Trigg et al
(2016). The MAI ranges from 0 (completely incon-
sistent) to 1 (completely consistent). It is calculated
as follows:

MAI=

n∑
i=2

(
1
n

)
ai

A
(1)

where n is the number of flood hazard datasets, which
is 5 in this study; A is the number of flooded pixels by
either of the flood hazard datasets; ai represents the
number of pixels identified as flooded by a number
of flood hazard datasets i.

3.2. Assessing flood exposure
Flood exposure is defined as the population pres-
ence in a 100 year return period floodplain, which
has gainedwidespread adoption in contemporary risk
assessments (Du et al 2018, Abedin et al 2024). The

flood-exposed population is calculated as follows:

populationexposure = populationtotal∩hazardflood
(2)

where Populationexposure represents the flood-exposed
population, Populationtotal is the total population
within a spatial unit, and Hazardflood refers to the
flood inundation extent, which is defined as areas
where the flood depth exceeds 0 cm (Du et al 2018).

3.3. Quantifying differences in flood exposure
Three indicators are employed to quantify the differ-
ences in flood exposure across various data combin-
ations: absolute exposure difference, relative expos-
ure difference, and coefficient of variation. Absolute
exposure difference refers to the disparity between
the highest and lowest flood-exposed populations.
Similarly, the relative exposure difference is quan-
tified as the range between the highest and lowest
flood-exposed population ratios (Hierink et al 2022).

The coefficient of variation captures the disper-
sion of flood-exposed populations across different
data combinations, eliminating the influence of dif-
ferent measurement scales and data units (Brown
1998). It is calculated as follows:

cv =

√
n∑

i=1

(
epi −meanep

)2
√
n×meanep

(3)

where cv is the coefficient of variation of flood-
exposed populations across different data combina-
tions; epi is the flood-exposed population under data
combination i; meanep is the mean of flood-exposed
populations across all data combinations; and n is the
number of data combinations.

3.4. Analyzing the relative importance of flood
hazard and population uncertainty
To compare the impacts of flood dimension and
population dimension on flood exposure variability,
flood exposure difference is quantified under each
dimension (Bernhofen et al 2022). First, we anchor
the analysis to a specific flood hazard dataset (denoted
as i) and systematically evaluate population expos-
ure variability by integrating all available population
datasets. This iterative calculation yields the exposure
range metric df 1, representing the uncertainty spec-
trum associated with population datasets. Second,
this workflow is replicated using each of the altern-
ative flood datasets, conducting parallel computa-
tions to derive the corresponding exposure metrics
[df 2, df 3, …, dfn]. Similarly, the calculation process can
be used to determine the flood exposure variability
under the population dimension. The calculation can
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be conducted as follows:

dfdim =

n∑
i=1

dfi

n
(4)

where df dim represents the flood exposure variability
under the hazard dimension (or population dimen-
sion); dfi is the flood exposure variability based on
dataset i; and n is the number of datasets under the
specific dimension.

To assess the relative importance of uncertainties
in flood hazard and population dimensions to the
exposed population assessment, the relative import-
ance index (RII) is employed following Ran et al
(2022). This index compares the coefficient of vari-
ation in the flood hazard dimension with that of the
population dimension. It can be calculated as follows:

RII=
cvflood

cvpopulation
(5)

where cvflood and cvpopulation are the coefficients of vari-
ation of exposed populations in the hazard and popu-
lation dimensions, respectively. A larger RII indicates
that uncertainties in the flood hazard dimension have
a greater influence on flood exposure variability, and
vice versa.

4. Results and discussion

4.1. Uncertainties in flood exposure in China
At the national scale, data selection exerts profound
impacts on the outcomes of flood exposure assess-
ments. Utilizing 25 distinct data combinations, the
population exposed to a 100 year flood area ranges
from 183 million to 516 million individuals, a dispar-
ity corresponding to exposure ratios varying between
13.61% and 38.27% of the total population. This res-
ults in a variation of up to ∼333 million people, or
a 2.82-fold difference (figure 1). These findings coin-
cide with Aerts et al (2020) and underscore the crit-
ical limitation of flood exposure assessments that rely
solely on single dataset, which is inherently subject
to substantial uncertainties and may lead to either
overestimation or underestimation of actual flood
exposure.

Despite the uncertainties associating with
exposed population assessment, our results consist-
ently exhibit a phenomenon that exposed population
ratio is much higher than the floodplain’s ratio to
total terrestrial area, as the former remains 2.28–3.49
folds of the latter across all the combinations of flood
hazard and population data (figure 1). This indic-
ates a disproportionate distribution of population in
floodplains, a phenomenon also found in other stud-
ies (Du et al 2018, Devitt et al 2023). This study proves
that such a phenomenon is robust to uncertainties

associating with data selection in China, which poses
a critical challenge for China to achieve flood risk
management in a changing climate (Du et al 2019,
Ding et al 2022).

At the basin scale, the average of relative expos-
ure differences across all dimensions and data com-
binations is 33.9% in eastern coastal regions, which is
higher than that in central basins (23.1%) and west-
ern basins (20.7%). At the sub-basin scale, higher
values of relative exposure difference are predomin-
antly concentrated in the eastern coastal regions and
central regions (figure 2(a)). A number of 238 sub-
basins exhibit an average relative difference exceed-
ing 30.0% (seen as obvious difference), accounting
for 45.0% of all sub-basins; particularly in eastern
region, 88 sub-basins show obvious differences, with
a much higher ratio (67.7%) than the national aver-
age (45.0%). These results suggest a concentration of
relative exposure differences in eastern China.

4.2. Variations in the impacts of flood hazard and
population dimensions on flood exposure in China
At the national scale, the selection of flood haz-
ard data has a more pronounced influence on both
absolute and relative differences in flood exposure,
compared to the choice of population data. With
a fixed population dataset and varying flood haz-
ard data, absolute flood exposure differences range
from 239 million to 314 million people, correspond-
ing to relative differences of 17.71% to 23.34%. In
contrast, when scanning different population data
with a fixed flood hazard dataset, the absolute dif-
ferences of flood exposure range from 24.61 million
to 93.69 million people, with relative exposure differ-
ences between 1.83% and 6.95%, which are notably
smaller than those caused by variations in flood haz-
ard data. At the basin and sub-basin scales, the flood
hazard factors also show an overall higher impact
than that of population data on flood exposure differ-
ences (figure 2(b)). The results prove the rationality
of previous studies that intuitively only consider the
impacts of variations in flood hazard data on exposed
population to some extent (Aerts et al 2020, Huang
and Wang 2020).

However, the impacts of flood hazard and popu-
lation dimensions on flood exposure in China exhibit
significant spatial variation (figures 2(c) and (d)).
In terms of flood hazard dimension, the spatial
pattern of flood exposure uncertainty is consistent
with the situation when both dimensions are con-
sidered together (figure 2(c)). At the basin scale,
the average relative difference in the eastern coastal
basins is 28.5%, compared to 18.6% in the central
basins and 13.7% in the western basins; at the sub-
basin scale, among the 107 sub-basins with relat-
ive differences exceeding 30.0% under hazard factors,
56.1% are located in the eastern coastal regions.
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Figure 1. The ratios of flood inundation areas to the total area and of the exposed population to the total population.

Figure 2. Relative exposure differences under influences of flood hazard and population data. The composite effects of flood
hazard and population data (a), a statistic of the effects (b), and the individual effect of flood hazard (c) and population data (d).

However, regarding population dimensions, higher
relative exposure differences are concentrated in the
western regions. The average relative exposure differ-
ence under population factors in the western basins

is 7.0%, while it is 6.0% and 5.1% in the eastern
coastal and central regions, respectively. At the sub-
basin scale (figure 2(d)), of the 45 sub-basins with
relative exposure differences exceeding 30.0% under
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population factors, 70.0% are located in the west-
ern regions. The results imply that the uncertainties
of population pattern should not be neglected when
assessing flood exposure (Smith et al 2019, Mohanty
and Simonovic 2021, Bernhofen et al 2022, Láng-
Ritter et al 2025).

According to the RII results, defined as the ratio
of the coefficient of variation for the flood haz-
ard dimension to that of the population dimen-
sion, the flood hazard dimension has a more sig-
nificant impact on flood exposure variability over-
all, which again assures the findings from the com-
parison between relative exposure differences under
the influence of flood hazard and population data.
At both the national and basin scales, the RII val-
ues are greater than 1, indicating that the selection
of flood datasets has a larger effect on flood expos-
ure outcomes. At the sub-basin scale, 82.04% of the
sub-basins (434 in total) had RII values greater than
1, suggesting that the variability in the flood hazard
dimension outweighs that in the population dimen-
sion (figure 3). However, 95 sub-basins have RII val-
ues less than 1, mainly concentrated in the western
regions, highlighting regional differences in RII val-
ues and implying that in regions like western China
the uncertainties of population pattern play a key role
in shaping flood exposure.

4.3. Underlying mechanisms by which data
selection influences flood exposure
The influence of population datasets on exposure
should be a result of different patterns, as the total
population has been adjusted to the same value for all
datasets. In other words, the main source of uncer-
tainty in the population dimension comes from the
different methods of dasymetric mapping in the pop-
ulation datasets. Flood exposure is concentrated in
fewer flood pixels when usingWorldPop, PoiPop, and
LandScan as these datasets result in higher expos-
ure density. These datasets use settlement areas as
important auxiliary variables during the dasymetric
mapping of population (Swanwick et al 2022), leading
to more concentrated population distributions com-
pared to other population datasets. In contrast, GPW
and CnPop, which employ simpler population dis-
aggregation methods (Doxsey-Whitfield et al 2015,
Wang and Wang 2022), results in more evenly dis-
tributed population patterns, as indicated by flatter
cumulative curves of exposed population (figure S1).

The relative impact of population data is asso-
ciated with basin area, average slope, and average
elevation as these factors are significantly negatively
correlated with the RII (p < 0.001; table S3). This
suggests that in sub-basins with larger areas, steeper
slopes, and higher elevations, population data vari-
ability plays a greater role in shaping flood expos-
ure, which are the typical characteristics of many
sub-basins in mountainous western China. The find-
ings indicate higher demands on dasymetricmapping

of population to conduct a reliable flood exposure
analysis in regions with larger areas, steeper slopes,
and higher elevations (Baynes et al 2022, Lu andWeng
2024), particularly in the rural as indicated by Láng-
Ritter et al (2025).

Both the total flood area and the spatial pat-
tern play a role in shaping the exposure differences
caused by flood hazard data. First, the differences
in total flood area play a key role in the variabil-
ity of flood exposure ratios. For example, the flood
exposure ratios associating with GAR and ECMWF
remain 1.72–2.48 times those of GLOFRIS, JRC, and
CAMA (figure 2(a)); consistently, the flood extents
of GAR and ECMWF are exactly 1.63–2.41 times
of the extents of GLOFRIS, JRC, and CAMA. On
the other hand, the spatial pattern of flood extents
is another reason causing flood exposure variability.
The JRC, CAMA, and GLOFRIS exhibit similar total
flood areas, at 5.71%–5.90% of the total terrestrial
area. However, the differences in flood exposure asso-
ciating with the three flood hazard datasets could be
as large as 1.63 times as much given a fixed popula-
tion dataset. The notable differences of flood expos-
ure are likely a result of the variations in flood pat-
terns, as the MAI between these flood datasets is gen-
erally less than 0.4, and even below 0.1 in some sub-
basins (figure 4).

The relative impact of flood hazard data is associ-
ated with indicators reflecting urbanization, accord-
ing to the correlations between indicators and the
RII (p < 0.001; table S3). The RII is significantly
positively correlated with the artificial surface cov-
erage, the average nighttime light index, nighttime
light coverage ratio, average GDP, and the proportion
of flat areas within the sub-basin, suggesting that an
increase in these indices could amplify the impacts
of flood hazard. These indices show high values in
the eastern coastal regions (Rentschler et al 2023),
which is consistent with the higher relative import-
ance of the hazard data in these areas and agrees with
the findings of Aerts et al (2020). Even slight differ-
ences in flood inundation extent in these regions can
lead to significant differences in flood exposure, mak-
ing a careful selection of flood hazard maps crucial
for assessing flood exposure in these areas. Therefore,
there is an urgent need for localized modeling to
accurately reflect flood inundation extents and reduce
uncertainties (Yamazaki et al 2011, Ward et al 2013,
Balsamo et al 2015, Rudari et al 2015, Dottori et al
2016, Khoshkonesh et al 2024).

4.4. Limitations and future prospects
Like all data-driven analyses, this study is subject to
inherent limitations that necessitate cautious inter-
pretation of its findings. First, it only uses the max-
imum flood extents as a proxy for floodplains for
calculating population exposure but neglects the
impacts of different flood depths. Although the defin-
ition of floodplain has been widely used in flood
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Figure 3. The Relative Importance Index (RII) characterizing the contributions of flood hazard dimension and the population
dimension to exposed population assessment.

Figure 4. Consistency of five flood hazard datasets (n indicates the number of datasets in which the pixel is flooded).

exposure assessment (Samoray et al 2024), the vary-
ing risk associated with different flood depths is also
important (Mohanty and Simonovic 2021). Future
research could help to clarify the uncertainties of
population exposure across various flood depths
when using different flood datasets. Second, this
study focused on the flood exposure for a single
year but neglected uncertainties regarding temporal
changes in exposed population over a period, which
is also critical for guiding flood management policies

(Mazumder et al 2022, Xu and Qiang 2024). Future
studies could explore the dynamics in flood-exposed
populations under different combinations of data
products. Third, although representative data were
used for the comparative study, they were not valid-
ated against real values. Regarding population data,
future research could utilize finer-scale population
data to develop more realistic exposure assessment
models (Ceola et al 2014, Tellman et al 2021), and
even to reflect seasonal dynamics of the population
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and exposure by leveraging mobile phone signal-
ing and other big data (Luan et al 2024). Regarding
flood hazard data, future studies could employ loc-
alized hydrodynamic modelling (Schubert et al 2024,
Haces-Garcia et al 2025) to simulate historical events
(Tellman et al 2021) and possible flood processes
under future climate parameters (Rogers et al 2025)
to produce reliable flood hazard data in assessing pop-
ulation exposure, particularly for areas with a relat-
ively high importance of flood hazard data. Fourth,
this study did not account for flood protection levels,
which may lead to an overestimation of popula-
tions exposed to flood maps that do not incorpor-
ate flood protection levels (Wu et al 2024). With
urbanization and economic development there is an
increasing focus on flood protection improvement.
Incorporating flood protection data into flood simu-
lations could yield more accurate exposure estimates
(Wang et al 2021).

5. Conclusion

To understand the potential impacts of data uncer-
tainty on flood exposure assessment, this study sys-
tematically investigated China’s flood-exposed pop-
ulation across five sets of flood hazard data and five
sets of population data. The results showed significant
differences in flood exposure estimates across differ-
ent data combinations and yielded a 100 year flood
population ranging from 183 to 516 million, with a
disparity of up to 333 million or 2.82 folds. Overall,
the uncertainties of flood exposure were primarily
from the impact of flood inundation extents rather
than the impacts of population data discrepancies.
Spatially, the influence of flood inundation differ-
ences wasmore pronounced in the east, while popula-
tion factors had a relatively greater impact on expos-
ure in western sub-basins. The relative importance
of flood hazard and population data to flood expos-
ure was significantly associated with factors of slope,
elevation, and artificial surface coverage. Despite the
differences, all data combinations revealed a dispro-
portional distribution of population in floodplains
as the exposed population ratio remained 2.28–3.49
folds of the floodplains’ share to the total lands. These
findings highlight the importance of incorporating
data uncertainties into flood exposure assessment. A
robust understanding of flood exposure can guide
policymakers towards sound decisions on flood risk
management and promote the achievement of sus-
tainable development goals.
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All datasets used in this study are publicly available
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is available from the Global Risk Data Platform www.
undrr.org/publication/global-assessment-report-
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able from www.wri.org/data/aqueduct-floods, the
JRC flood maps is available from https://data.jrc.
ec.europa.eu/dataset/jrc-floods-floodmapgl_rp50y-
tif, and the ECMWF flood maps is available from
https://apps.ecmwf.int/datasets/. For the popula-
tion datasets, the WorldPop dataset is available from
https://hub.worldpop.org/geodata/listing?id=69, the
LandScan is available from https://landscan.ornl.
gov/, the GPW is available from www.earthdata.
nasa.gov/data/catalog/sedac-ciesin-sedac-gpwv4-
popcount-r11-4.11, the CnPop is available from
www.resdc.cn/DOI/DOI.aspx?DOIid=32, and the
PoiPop could be obtained from https://person.zju.
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