Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Activation of chloride by oxygen vacancies-enriched TiO₂ photoanode for efficient photoelectrochemical treatment of persistent organic pollutants and simultaneous H_2 generation

Jiabao Wu^{b,1}, Ying Tao^{b,1}, Chi Zhang^b, Qiong Zhu^b, Dieqing Zhang^{a,*}, Guisheng Li^{a,b,c,**}

^a The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China

^b School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, PR China

^c School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China

HIGHLIGHTS

- A PEC-Cl system was proposed for efficient degradation POPs and generation of H₂.
- Mechanism of Cl⁻ activation in O_v-TiO₂/ PEC-Cl system was revealed.
- The oxygen vacancies in Ov-TiO2 reduced the activation energy of Cl⁻ and H_2O .
- ClO• radical was the main RCS responsible for the degradation of POPs.
- · Nearly no toxic by-product of chlorates was produced in the PEC-Cl system.

GRAPHICAL ABSTRACT

ARTICLE INFO

Editor: Sungjun Bae

Keywords: Industrial saline organic wastewater Reactive chlorine specie Photoelectrochemical chlorine system Oxygen vacancies Toxic by-product

ABSTRACT

Photoelectrochemical (PEC) activation of chloride ions (Cl⁻) to degrade persistent organic pollutants (POPs) is a promising strategy for the treatment of industrial saline organic wastewater. However, the wide application of this technology is greatly restricted due to the general photoanode activation of Cl⁻ with poor capability, the propensity to produce toxic by-products chlorates, and the narrow pH range. Herein, oxygen vacancies-enriched titanium dioxide (Ov-TiO2) photoanode is explored to strongly activate Cl⁻ to drive the deep mineralization of POPs wastewater in a wide pH range (2-12) with simultaneous production of H₂. More importantly, nearly no toxic by-product of chlorates was produced during such PEC-Cl system. The degradation efficiency of 4-CP and H_2 generation rate by O_v -TiO₂ were 99.9% within 60 min and 198.2 µmol h⁻¹ cm⁻², respectively, which are far superior to that on the TiO_2 (33.1% within 60 min, 27.5 µmol h⁻¹ cm⁻²) working electrode. DFT calculation and

* Corresponding author.

- E-mail addresses: dqzhang@shnu.edu.cn (D. Zhang), liguisheng@shnu.edu.cn (G. Li).
- ¹ Equal contribution

https://doi.org/10.1016/j.jhazmat.2022.130363

Received 5 September 2022; Received in revised form 6 November 2022; Accepted 7 November 2022 Available online 9 November 2022 0304-3894/© 2022 Elsevier B.V. All rights reserved.

^{**} Corresponding author at: The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China.

capture experiments revealed that O_{v} -TiO₂ with abundant oxygen vacancies is conducive to the activation of Cl⁻ to produce more reactive chlorine species, evidenced by its high production of free chlorine (48.7 mg L⁻¹ vs 7.5 mg L⁻¹ of TiO₂). The as-designed PEC-Cl system in this work is expected to realize the purification of industrial saline organic wastewater coupling with green energy H₂ evolution.

1. Introduction

The high-speed development of industrialization has produced a large amount of saline organic wastewater, leading to severe water contamination and threatening human health (Jassby et al., 2018; Song et al., 2021; Lin et al., 2020). Recently, several sewage treatment technologies have emerged, including physical adsorption method (Sun et al., 2020; Pu et al., 2018), membrane treatment technology (Pan et al., 2020; Chen et al., 2021a), chemical oxidation method (Li et al., 2021a; Sözen et al., 2019; Ke et al., 2021), biodegradation method (Jayakumar et al., 2021; Bilal et al., 2022; Frank et al., 2021; Liu et al., 2022). Unfortunately, all of these methods have limitations due to the high salt content of wastewater and the wide variation in pH, which is the handicap of industrial saline organic wastewater treatment.

Photoelectrochemical (PEC) technology (Pan et al., 2019; Kim et al., 2018; Luo et al., 2017; Dai et al., 2020; Wang et al., 2020) has aroused extensive attention as one of the most promising approaches for wastewater treatment and synergistic generation of H₂ by using solar energy and external bias due to its merits of high-stability electrodes that can be used in wide pH environment (Zheng et al., 2021; Zheng and Lo, 2021). As for saline organic wastewater, in addition to the reactive oxygen species (ROS) produced by photogenerated holes oxidation (Lian et al., 2020; Nosaka and Nosaka, 2017; Liu et al., 2020; Chen et al., 2021b; Zhao et al., 2019; Mei et al., 2021), the enriched Cl⁻ can also be oxidized to reactive chlorine species (RCS) (Li et al., 2020; Ji et al., 2017; Menzel et al., 2013; Koo et al., 2019; Cheng et al., 2020; Zhang et al., 2019), such as chlorine radical (Cl \bullet , Cl $_2^{\bullet-}$), chlorine oxygen free (ClO \bullet) and free chlorine (Cl₂, HClO/ClO⁻) (FCS). Both ROS and RCS are strong oxidants that can efficiently break down various organic pollutants, enabling a collaborative wastewater treatment strategy. However, the traditional PEC-Cl systems (usually based on photoanodes such as TiO₂, WO₃ and BiVO₄) (Kim et al., 2018; Koo et al., 2019; Li et al., 2021b) are faced to many challenges including easy recombination of photocarriers, narrow range of pH, poor activation ability of Cl⁻ and excessive oxidation of Cl⁻ by HO• to produce toxic by-products chlorate (ClO_3, ClO_4) (Chen et al., 2017; Hou et al., 2018; Coates and Achenbach, 2004), which limit their practical application in wastewater treatment.

Defect engineering, especially oxygen vacancies, is ubiquitous in metal oxides and has profound effects on optical, physical and catalytic properties of materials (Kim et al., 2022; Ma et al., 2022). The oxygen vacancy can improve the molecular adsorption characteristics and the reaction activity on the surface of the photoelectrode, narrow the band gap to expand the absorption of light, increase the carrier concentration, improve the conductivity and charge separation efficiency (Wang et al., 2012; Wang et al., 2018a; Wang et al., 2019). Meanwhile, oxygen vacancies also have certain advantages in the activation of free radicals. Li et al. reported that in the activation process of hydrogen peroxide (H₂O₂), the oxygen vacancy accelerated the electron transfer between the catalyst and H₂O₂, lowered the reaction energy barrier, and activated H₂O₂ very effectively, and thus improved the reaction kinetics (Li et al., 2017). Lim et al. showed that oxygen vacancies provide catalytic sites for HSO₅⁻ transformation and promote the production of SO₄^{•-} radicals during PMS activation (Lim et al., 2019). Oxygen vacancies not only improve the photoelectrochemical properties of the photoelectrode itself, but also increase the adsorption and activation sites of molecules, which are conducive to the production of highly active free radicals on the surface of the photoanode.

Herein, we used TiO_2 as a model catalyst to introduce appropriate oxygen vacancies in TiO_2 nanorods with high specific surface area,

sufficient reaction sites and favorable free radical transfer to verify the PEC active chlorine system (PEC-CI). The experimental results showed that the introduction of oxygen vacancy can produce a large amount of RCS, which can effectively degrade POPs and generate H_2 efficiently in saline organic wastewater. Theoretical calculations revealed that the introduction of oxygen vacancy can improve the conductivity of photoelectrode and promote the efficiency of hole and electron separation. More importantly, the activation energy of Cl⁻ and water was reduced, and the generation of active free radicals in the photoanode system was significantly enhanced. Therefore, the O_v -TiO₂ photoanode could activate Cl⁻ in a wide pH range (2–12), achieve degradation of 4-CP and H_2 generation, and greatly inhibit the production of chlorate as a by-product (the yield was only 1.04 mg L⁻¹). This study confirmed that the oxygen vacancy regulation strategy is an effective way to improve the treatment efficiency of pollutants in PEC-Cl system.

2. Materials and methods

2.1. Materials

The fluorine doped tin oxide (FTO) glass ($20 \times 30 \times 2.2 \text{ mm}$) was purchased from South China Science & Technology Co., Ltd. K₂TiO (C₂O₄)₂, Na₂CO₃, Nitrobenzene (NB), EDTA-2Na and NaHCO₃ were purchased from Aladdin Industrial Corporation. Na₂HPO₄, KH₂PO₄, NaCl and Na₂SO₄ were purchased from Shanghai Rich Joint Chemical Reagents Co., Ltd. All chemical reagents were used as received without any further purification. Experimental water was provided by deionized water system (OKP-H120).

2.2. Electrode preparation and analytical methods

The specific preparation and analysis methods were stated in Supplementary material.

2.3. Experimental setup

An H-type double cell (200 mL) separated by a proton exchange membrane (Nafion 117) with a three-electrode system was used as the reactor (Fig. S2), which includes a counter electrode (1 \times 1 cm² platinum sheet), a reference electrode (saturated calomel electrode SCE) and a working electrode (2 \times 2 cm² TiO₂ or O_v-TiO₂). The relevant photoelectrochemical data were recorded in an electrochemical workstation (CHI660E). The PEC system mentioned in this work meant that the electrolyte contained only 0.1 M Na₂SO₄ while PEC-Cl contained a concentration of 50 mM NaCl and 0.1 M Na₂SO₄. The light source was provided by a 300 W xenon lamp light source system (CEL-HXF300-T3) with a cutoff filter (AM 1.5, 400 mW cm^{-2}). Pollutant degradation and H₂ generation reactions were carried out in anode and cathode chamber of the H-type reactor, respectively. 1 mL of the solution was taken for analysis and determination each time. In order to avoid the reaction of pollutants with RCS and FCS, no pollutant was added to the anode chamber during the determination of FCS generation. In particular, the relevant electrochemical characterization was performed with threeelectrode system in a volume of 100 mL single cell containing 70 mL 0.1 M Na₂SO₄ solution.

2.4. DFT calculations

First-principles calculations under the framework of DFT were

performed in the Vienna ab-initio Simulation Package (VASP) with the version of 5.4.1. The details were presented in the Supplementary material.

3. Results and discussion

3.1. Characteristics of photoanode

The XRD patterns of TiO₂ and O_v-TiO₂ corresponded to the tetragonal rutile TiO₂ (JCPDS No.88–1175, a=b=0.4517 nm, c=0.2940 nm) (Fig. 1a). The crystallinity of O_v-TiO₂ was weakened mainly due to surface defects after electrochemical reduction, as shown by the significant decrease of (002) crystal plane peak. The surface oxygen defects were further analyzed by XPS (Fig. 1b). The binding energies of 459.1 eV (Ti 2p_{3/2}) and 465.1 eV (Ti 2p_{1/2}) were observed in TiO₂ which can be assigned to Ti⁴⁺. For O_v-TiO₂, the both Ti 2p peaks were shifted to a lower binding energy, compared to that of TiO₂. This result indicates the presence of Ti³⁺ in O_v-TiO₂ (Koo et al., 2017; Xu et al., 2020; Liao et al., 2014). Therefore, we also analyzed the XPS of TiO₂ and O_v-TiO₂ by the subtraction method and found that the peaks of Ti³⁺ were presented in O_v-TiO₂, further revealing the oxygen vacancies in O_v-TiO₂. Moreover, XPS spectra of O 1 s were used to confirm the presence of oxygen

vacancies too (Fig. S3), The O 1 s XPS spectra of O_v-TiO₂ were deconvoluted with three major peaks, located at 529.78, 531.06 and 531.86 eV, respectively, which could be corresponded to the lattice oxygen (O_I), oxygen defect (O_V) and chemisorbed oxygen region (O_C) (Lim et al., 2019; Wang et al., 2018b; Zhang et al., 2014). And the ratio of O_V in the O_v-TiO₂ was 2.6 times higher than that of the TiO₂, indicating the formation of oxygen vacancy in the O_v-TiO₂ (Table S1). And the O/Ti ratio (2.81) of O_v-TiO₂ was much smaller than that (2.87) of TiO₂, further demonstrating the presence of oxygen vacancy in the Ov-TiO2 (Table S2). Furthermore, we measured the UV-vis absorption spectra of the TiO₂ and O_v-TiO₂, and found that the light absorption of O_v-TiO₂ was slightly shifted from 408 nm to 413 nm (Fig. S4). Clearly, oxygen vacancies of O_v-TiO₂ could not significantly affect its light absorption properties. We believe that it can be attributed to the low content of oxygen vacancy in O_v-TiO₂ photoelectrode. And the color of O_v-TiO₂ film was slightly deepened after electrochemical reduction, which implied its light absorption would not get a big increase (Fig. S5). The similar phenomenon also exists in previous studies (Kim et al., 2018).

The morphology of TiO₂ and O_v-TiO₂ nanorods array electrode were characterized by FESEM and TEM (Fig. 1c-e, S6). The O_v-TiO₂ exhibited nanorod-like morphologies uniformly with an average width of about 110 nm. The interplanar spacings of 2.0 ± 0.1 Å and 3.2 ± 0.1 Å were

Fig. 1. (a) XRD patterns of FTO, TiO₂ and O_v-TiO₂. (b) The difference XPS spectra of Ti 2p band between TiO₂ and O_v-TiO₂, (c) FESEM image from the top surface view, (d) TEM image and (e) HRTEM image of O_v-TiO₂. The inset of (d) shows SAED pattern of O_v-TiO₂, (f-i) The EDS elemental mapping images of O_v-TiO₂ about Ti and O.

consistent with the (201) and (110) facet of TiO₂, respectively. Selected area electron diffraction (SAED) pattern was uniformly arranged, indicating the single crystal of TiO₂ (the inset of Fig. 1d). EDS mapping analysis showed that the Ti and O elements in the nanorods were uniformly distributed (Fig. 1f-i). This 1D single crystal TiO₂ nanorods array is very advantageous for the rapid transfer of electrons. In addition, the 1D nanorods array not only has a huge specific surface area, but also enhances its light absorption due to the multiple reflections of light in the array structure (Dai et al., 2020; Park et al., 2021; Li et al., 2016). The contact angle measurement showed that both TiO₂ and O_v-TiO₂ electrodes had strong hydrophilicity (Fig. S7), which could promote the contact of pollutants and Cl⁻ in wastewater to the electrode surface, thus accelerating the PEC chlorine activation and pollutants degradation reactions.

3.2. Effects of oxygen vacancies content on TiO₂ photoanode

The oxygen vacancies-enriched TiO₂ photoanode was successfully prepared by electrochemical reduction technology. The content of oxygen vacancies was regulated by controlling the time of electrochemical reduction. As shown in Fig. S5, the color of TiO₂ photoelectrode gradually deepened with the extension of electrochemical reduction time, which is the characteristic of the increase of oxygen vacancy concentration(Kim et al., 2018, Koo et al., 2017). Furthermore, we carried out photocurrent responses measurement to investigate influence of the content of oxygen vacancies on the PEC-Cl performance, and Cl⁻ activation experiment (Fig. S8). The results showed that the appropriate content of oxygen vacancy (electrochemical reduction by 180 s) could improve the carrier separation efficiency and the photocurrent response, promoting the activation of Cl⁻ to generate more FCS.

3.3. Photoelectrochemical degradation and H_2 generation performance

The degradation of 4-CP coupled with H₂ generation on Ov-TiO₂

were compared with TiO₂ in electroncatalysis (EC), photocatalysis (PC), PEC and PEC-Cl systems (Fig. 2a, b). The results showed that the TiO₂ and O_v-TiO₂ exhibited no obvious degradation of 20 ppm 4-CP, and H₂ production in EC and PC systems. However, in PEC systems, the degradation rate of 4-CP within 60 min was 31.7% by O_v-TiO₂, which is higher than that on TiO₂ (18.0%). Furthermore, the H₂ generation rate on O_v-TiO₂ was 161.3 µmol h⁻¹ cm⁻², which is 8.6 times higher than that of TiO₂.

Interestingly, in PEC-Cl systems, both the degradation rate of 4-CP within 60 min on O_v -TiO₂ and TiO₂ were increased so much. It reached 99.9% on Ov-TiO2, while that was 33.1% for TiO2. In addition, the H₂ generation rate of O_v -TiO₂ was also as high as 198.2 µmol h⁻¹ cm^{-2} , which is about 7.2 times higher than that of TiO₂ and also higher than that on O_v -TiO₂ without Cl⁻. O_2 was not detected in the PEC-Cl system (Fig. S9). These results indicate that O_v-TiO₂ had much more excellent photoelectrochemical performance than TiO₂ in pollutants degradation and H₂ generation. Meanwhile, it was verified that overall catalytic performance of the PEC-Cl system on whatever the TiO₂ or O_v-TiO₂ was better than that in the PEC system, revealing the important role of Cl⁻ in the PEC-Cl system. Furthermore, similar results were also obtained in the degradation of Phenol and Bisphenol A (BPA) in the PEC-Cl system with O_v-TiO₂ (Fig. S10). In the PC and EC systems, the degradation of Phenol and BPA and H₂ generation rate was not worth mentioning. The removal rate of 20 ppm Phenol within 60 min was 31.7% and H_2 generation rate was 163.7 $\mu mol \ h^{-1} \ cm^{-2}$ in the PEC system. The removal rate of 20 ppm BPA within 60 min was 39.2% and H_2 generation rate was 160.7 µmol h⁻¹ cm⁻² in the PEC system. For the PEC-Cl system, 99.9% Phenol can be removed within 30 min and the H₂ generation rate was 195.6 µmol h⁻¹ cm⁻². And 99.9% BPA can be removed within 30 min and the H₂ generation rate was 192.5 μ mol h⁻¹ cm⁻². These results further proved that the PEC-Cl system with O_v-TiO₂ photoanode possesses excellent POPs degradation and H₂ generation performance compared with PEC-Cl and PEC systems reported in recent years (Table S3).

Fig. 2. (a) The degradation of 4-CP and (b) the generation rate of H_2 on TiO₂ (yellow lines) and O_v -TiO₂ (green lines) in PC, EC, PEC and PEC-Cl systems. (c) The degradation of 4-CP and (d) the generation rate of H_2 on O_v -TiO₂ in PEC-Cl system under different pH, (e) TOC removal efficiency of 4-CP and Phenol on O_v -TiO₂ in PEC and PEC-Cl system after 180 min reaction, (f) the concentrations of chlorate on O_v -TiO₂ in the PEC-Cl system. The inset of (f) is standard curve of chlorate concentration. ([4-CP]₀ = 20 ppm, [NaCl] = 50 mM, [Na₂SO₄] = 0.1 M, + 0.5 V (vs. SCE), pH = 4, simulated sunlight irradiation.).

To better clarify the performance of the PEC-Cl system with O_v-TiO₂ photoanode, we further investigated the degradation of POPs and H₂ generation performance under different pH (Fig. 2c, d), bias voltage (Fig. S11a, b) and chlorine ions concentration (Fig. S11c, d). We found that 99.9% of 20 ppm 4-CP could be efficiently removed within 60 min in a pH range of 2-12, and the generating H₂ rate remained at an extremely high level (around 200 μ mol h⁻¹ cm⁻²). Moreover, we determined the concentration of FCS generated by the PEC-Cl system under different pH conditions, and found that the concentration of FCS generated under acidic conditions was slightly higher than that of alkaline condition (Fig. S12). This result indicated that the degradation efficiency could be affect by pH value due to the low FCS yield. The results show that the PEC-Cl system with Ov-TiO2 photoanode has wide pH adaptability and enables pollutants degradation and H₂ generation under extreme conditions. The effect of bias voltage on pollutants degradation and H₂ generation was investigated in the voltage range of 0-1.0 V (vs. SCE). As the applied bias voltage increased from 0 V to 1.0 V, the degradation of 4-CP and the H₂ generation rate were significantly promoted in PEC-Cl system (Fig. S11a, b). That may indicate the bias voltage can accelerate the separation of carriers resulting in a large number of holes to degrade the pollutant and electrons to generate H₂. As for the chlorine ions concentration effect, the H₂ generation rate and 4-CP removal rate gradually increased with the increasing of the concentration from 0 to 100 mM (Fig. S11c, d). With high concentration of Cl⁻, its activation by holes was promoted which not only inhibited the recombination of photo-generated carriers, but also enhanced the formation of RCS and accelerated the H_2 generation and pollutant degradation. Above all, these results reveal that the PEC-Cl system with O_v -TiO₂ photoanode can be applied to purify the wastewater under complex conditions.

Total organic carbon (TOC) removal rate of POPs was also measured and compared for PEC and PEC-Cl system with Ov-TiO2 photoanode (Fig. 2e). After 180 min of photoelectrochemical reaction in the PEC system, the TOC removal rates of Phenol and 4-CP were only 17.2% and 28.9%, respectively. However, in the PEC-Cl system, the TOC removal rates of Phenol and 4-CP were increased to 50.6% and 46.9%, respectively. These results indicate that the presence of Cl⁻ remarkably strengthened the TOC removal efficiency in the PEC-Cl system, which is consistent with the result of the degradation of pollutants in PEC-Cl system. It is generally recognized that some molecular organic matter could be produced in the photoelectrochemical degradation of 4-CP. Meanwhile, the degradation rate of contaminant could be not consistent with the mineralization rate (Song et al., 2021; Koo et al., 2019; Lim et al., 2019). Therefore, we extended the reaction time to 10 h, and found that the TOC removal efficiency of 4-CP was over 91% in the PEC-Cl system (Fig. S13). This indicated that PEC-Cl degradation of 4-CP using O_v-TiO₂ photoelectrode could not produce secondary pollution. In addition, the concentrations of toxic by-product chlorate during the degradation of Phenol and 4-CP in the PEC-Cl system with 50 mM NaCl were also monitored by IC. As shown in Fig. 2f, the concentration of chlorate gradually increases with time. However, when Phenol and 4-CP were completely degraded, the concentrations of chlorate were only

Fig. 3. (a) The discontinuous linear sweep voltammetry of TiO_2 and O_v - TiO_2 with or without 50 mM NaCl under simulated solar light irradiation, (b) Tafel slopes fitted from a continuous LSV under simulated sunlight irradiation, (c) the electrochemical impedance spectroscopy under simulated sunlight irradiation or dark, (d) the electrochemical double-layer capacitance of TiO_2 and O_v - TiO_2 .

1.04 mg L⁻¹ and 0.53 mg L⁻¹, respectively, which are an extremely low, non-toxic, dischargeable concentration (Hou et al., 2018; Zhang et al., 2021). These results suggest that the PEC-Cl system with O_v -TiO₂ is an environmentally friendly catalytic system and very suitable for industrial saline organic wastewater treatment.

3.4. Photoelectrochemical performance measurement

The intrinsic photoelectrochemical properties of TiO₂ and O_v-TiO₂ were investigated to understand the high PEC activity of the Ov-TiO₂ photoanode. As shown in Fig. 3a, the photocurrent response intensities of O_v-TiO₂ were much higher than those of TiO₂ whatever with or without Cl⁻ under light irradiation. As for O_v-TiO₂, Cl⁻ would slightly enhance the photocurrent, suggesting that the Cl⁻ can promote the separation of photogenerated carriers in the chlorine-containing PEC system. The corresponding electrochemical kinetic Tafel slopes were obtained by fitting the continuous LSV curves (Fig. S14a). The Tafel slope of O_v -TiO₂ was 450 mV dec⁻¹, which is much smaller than that of TiO₂ (945 mV dec⁻¹) (Fig. 3b). This result indicates that O_v -TiO₂ possessed a faster electron transfer rate than the TiO₂. Moreover, O_v-TiO₂ could undergo the PEC reaction with a lower over-potential at the same current density. The electrochemical impedance spectra showed that the Nyquist curves of TiO₂ and O_v-TiO₂ were linear transport model under dark condition, indicating that there would be large resistance for the charge transfer (Fig. 3c). Under the sunlight irradiation, obvious semicircular models were observed on both TiO_2 and O_v - TiO_2 . The impedance arc radius of O_v - TiO_2 was slightly smaller than that of TiO_2 , indicating that O_v - TiO_2 was more conducive to the electron transfer.

The Mott-Schottky curves of TiO_2 and O_v - TiO_2 were measured at frequencies of 500, 1000, and 1500 Hz. As shown in Fig. S14b and c, the Mott-Schottky curves of O_v - TiO_2 had much smaller slopes than the TiO_2 . Photogenerated carrier densities (N_D) at 500 Hz can be calculated according to the follow equation:

$$N_D = \frac{2}{e\varepsilon\varepsilon_0} \frac{dE}{d(\frac{1}{c^2})}$$

where N_D reflects the photogenerated carriers density, e refers to the charge value, ε_0 is the vacuum permittivity, ε is the semiconductor permittivity, E is the applied potential, and C represents the space charge capacitance (Xiao et al., 2019). The N_D of O_V -TiO₂ was 9.38×10^{23} cm⁻³, much larger than the TiO₂ (5.64×10^{21} cm⁻³). This is only a qualitative analysis since the value of N_D was calculated from the flat-electrode model. This result suggests that oxygen vacancies significantly increase the electrical conductivity of photoelectrode and then facilitate the electron transfer. Transient photocurrents were also measured under the same condition (Fig. S8a). The average photocurrent response value of O_V -TiO₂ reached to 2.4 mA cm⁻² with good cyclic stability, which is much higher than that of 0.4 mA cm⁻² for TiO₂. In

Fig. 4. (a) The generation of FCS on O_v -TiO₂ with different chlorine concentrations (100 mM* refers to the TiO₂ with 100 mM chlorine concentration), (b) the generation of FCS on both TiO₂ and O_v -TiO₂ in PC, EC and PEC conditions, (c) the degradation of 4-CP on O_v -TiO₂ in PEC-Cl system in the presnece of various scavengers, (d) EPR spectra of TiO₂ and O_v -TiO₂ in PEC and PEC-Cl systems ([4-CP]₀ = 20 ppm, [NaCl] = 50 mM, [Na₂SO₄] = 0.1 M, + 0.5 V (vs. SCE), pH = 4, simulated solar-light irradiation).

addition, the CV curves of TiO₂ and O_v-TiO₂ were measured with different scanning speeds (Fig. S15), their electrochemical surface area (ECSA) were estimated by the electrochemical double-layer capacitance method (Fig. 3d). The ECSA of O_v-TiO₂ (416.8 μ F cm⁻²) is 23 times of that of TiO₂ (17.6 μ F cm⁻²). Based on the above analysis, the increased removal efficiency of 4-CP and H₂ generation on O_v-TiO₂ in PEC-chlorine system may be attributed to its much more efficient photogenerated charge carrier separation efficiency compared to the TiO₂.

3.5. Mechanism of chlorine activation and degradation of pollutants

To investigate the significant role of Cl⁻ in the catalytic system, the generation of free chlorine species (FCS) on TiO₂ and O_v-TiO₂ was measured with different Cl⁻ concentrations (Fig. 4a). To exclude the effect of H₂O₂, we performed a controlled experiment without Cl⁻ (Fig. S16). The absorbance of the reacted solution had no change with DPD during the reaction, demonstrating that the determination of FCS by DPD coloration method could not be affected by H₂O₂. It should be noted that FCS were converted from chlorine radical species (Koo et al., 2019). As the Cl⁻ concentration increased from 10 to 100 mM in PEC-Cl system, the FCS generated by Ov-TiO2 also increased from 16.9 to 48.7 mg L⁻¹. In addition, the accumulation of FCS increased gradually with time in PEC-Cl system with whatever the TiO₂ or O_v-TiO₂ photoanodes. In the PEC-Cl system with 100 mM chlorine concentration, the generation of FCS was 48.7 mg L^{-1} by O_v -TiO₂ within 60 min, which is about 6.5 times than that with TiO_2 (7.5 mg L⁻¹). The results clearly demonstrate that O_v-TiO₂ can generate more RCS than TiO₂ by activating Cl⁻ at the same condition, which greatly promotes the degradation of POPs. Moreover, the generation of FCS by Ov-TiO2 and TiO2 were compared under variable energy input conditions (PEC, PC, and EC) with 50 mM chlorine concentration. Fig. 4b shows that FCS was only observed in PEC condition. That may be caused by the poor separation efficiency of photogenerated carriers in the PC condition without bias voltage and the not enough voltage required for Cl⁻ activation (1.36 V vs. NHE) in the EC condition (+ 0.5 V vs. SCE) (Koo et al., 2019). This implies that the synergy effect of bias voltage and sunlight in PEC system leads to the generation of RCS, and thus the degradation of pollutants.

To further clarify the main activated oxidants produced by O_v-TiO₂, EDTA-2Na and NB were used to scavenge holes and •OH radicals in the PEC-Cl degradation of 4-CP, and the PEC system without Cl⁻ were set as a blank control (Fig. 4c). In the presence of EDTA-2Na, the degradation of 4-CP was completely inhibited, which indicates that the degradation of pollutions was triggered by holes. The degradation rate of 4-CP was 41.8% due to •OH radicals were scavenged in PEC-Cl system. This is mainly attributed to holes and RCS. Moreover, we found that the degradation rate of 4-CP in the PEC system without Cl⁻ was only 34.0%, which is mainly caused by holes and •OH radicals. However, the degradation rate of 4-CP was 99.9% in the PEC-Cl system with Cl⁻, which is attributed to the synergy of the holes, RCS and •OH. The above results clearly reveal that the photogenerated holes were the fundamental oxidants for the degradation of pollutants, having the ability to activate H₂O and Cl⁻ which also was demonstrated in previous reports (Song et al., 2021; Kim et al., 2018; Li et al., 2021c). And the effect of RCS was significantly greater than •OH free radicals. Meanwhile, we used EPR spin-trapping technique to explore the working mechanism of the PEC-Cl system (Fig. 4d). The signal peak of DMPO-•OH with 1:2:2:1 intensity was observed in PEC and PEC-Cl system, indicating the existence of •OH radical. However, the signal intensity of •OH radical on O_v-TiO₂ was stronger than that on TiO₂ in PEC system. Moreover, in the PEC-Cl system, ClO• radical signal peak on Ov-TiO2 was clearly observed, which was negligible on TiO₂. In addition, in the systems with Ov-TiO2 photoanode, the signal intensity of •OH radical in PEC system was significantly higher than that in PEC-Cl system. However, the signal intensity of •OH radical was weak and the distinction was insignificant for TiO₂ photoanode. This might be due to the •OH reacted with FCS (such as HClO/ ClO⁻) for the formation of ClO• radical. The EPR results

also demonstrated that no SO₄• was produced in PEC and PEC-Cl system (Fig. 4d). No S₂O₈²⁻ was detected by ion chromatography (IC) (Fig. S17). This may because the low bias, which was applied in our reaction system, favors the activation of Cl⁻ and H₂O, but disfavors the activation of SO₄²⁻. These results indicate that O_v-TiO₂ significantly enhanced the generation of •OH in PEC system and promote the formation of RCS in PEC-Cl system. This further explains that the PEC-Cl system with O_v-TiO₂ photoanode possesses a better degradation performance of POPs.

In order to better understand the reasons for the excellent photoelectrochemical degradation activity of the catalysts, the DFT calculation was performed to study on the adsorption of H₂O and Cl⁻, and the further oxidation to •OH and Cl• on TiO2 and Ov-TiO2. The specific details of DFT theoretical calculation models were shown in Fig. S18. As shown in Fig. 5a, chloride ions were adsorbed on O_v-TiO₂ with the adsorption energy of -0.14 eV, which is 7 times larger than that of TiO₂. Furthermore, the rate-determining step of Cl⁻ activation, *Cl⁻ + h⁺ = *Cl, was spontaneous with a Gibbs free energy of -0.47 eV on O_v-TiO₂, while that was 1.28 eV on the TiO₂. It indicates that O_v-TiO₂ had better Cl⁻ adsorption and activation performance than TiO₂, which is consistent with the results of chlorine activation experiments in PEC-Cl system. As shown in Fig. 5b, the adsorption energy of H₂O on TiO₂ and O_v -TiO₂ was - 0.77 eV and - 0.41 eV, respectively. *OH⁻ + h⁺ = *OH is the rate-determining step of H₂O activation and its energy barrier was 2.19 eV on TiO₂, which is much higher than that of 0.49 eV on O_v-TiO₂. It suggests that Ov-TiO2 had a better performance of H2O activation to form •OH radicals than TiO2, which is also consistent with the results of EPR experiments. Meanwhile, the reaction process was calculated under light irradiation, and the U value was modified to 2.79 eV for TiO₂ and 2.66 eV for O_v -TiO₂. As shown in Fig. S19, the calculation results also indicate that Ov-TiO2 had better Cl⁻ and H2O activation performance than TiO2 under light irradiation. These results further explain the efficient degradation ability of the PEC-Cl system by using Ov-TiO2 photoanode.

Based on the above experimental and theoretical calculation results, we proposed the Cl⁻ activation and organic pollutants degradation mechanism in the industrial saline organic wastewater on the O_v -TiO₂ as shown in Fig. 5c. The main reaction steps were as follows (Li et al., 2020; Koo et al., 2019; Zhang et al., 2021; Li et al., 2021d; Zhang et al., 2018; Shao et al., 2022):

$O_v - TiO_2 + hv \rightarrow h^+ + e^-$	(1)
--	-----

 $H_2O + h^+ \to H^+ + \bullet OH \tag{2}$

$$Cl^{-} + h^{+} \rightarrow Cl \bullet$$
 (3)

 $Cl \bullet + Cl \bullet \to Cl_2$ (4)

 $Cl_2 + H_2O \rightarrow HClO + HCl$ (5)

- $Cl \bullet + HClO \rightarrow ClO \bullet + HCl$ (6)
- $\bullet OH + HClO \rightarrow ClO \bullet + H_2O \tag{7}$
- $\bullet OH + ClO^{-} \rightarrow ClO \bullet + OH^{-}$ (8)

$$\bullet OH / CIO \bullet + Org \to CO_2 + H_2O + CI^-$$
(9)

 O_v -TiO₂ generates e⁻ and h⁺ pairs under light irradiation, and the e⁻ is exported to the cathode through the external circuit for reducing H⁺ and generating H₂. The abundant h⁺ left on the surface of O_v -TiO₂ quickly reacts with H₂O and Cl⁻ to generate •OH and Cl• radicals. The combination of the two Cl• radicals can form Cl₂, which can react with H₂O to form HClO. And then, the •OH and Cl• radicals react with HClO to form ClO• radicals with strong oxidizing ability. Active oxide species such as h⁺, •OH and RCS in the reaction system react with electron-rich POPs to mineralize them into CO₂ and H₂O, achieving the goal of purifying the water environment.

Fig. 5. The Gibbs free energy diagrams about the formation of (a) Cl• and (b) •OH on TiO₂ and O_v -TiO₂, (c) the degradation scheme of 4-CP by active species on O_v -TiO₂, (d) Degradation pathways for 4-CP in PEC-Cl system.

Besides, we applied LC-MS to analyze possible intermediates in the process of 4-CP degradation. Some major intermediates were observed and their possible molecular structures were shown in Fig. S20. Typically, these products were produced through a series of processes such as oxidation, ring opening and fragmentation. Ideally, these products would eventually mineralize into CO_2 and H_2O . The possible degradation pathways of 4-CP in the PEC-Cl system were illustrated in Fig. 5d.

3.6. Electrical energy consumption and stability of the PEC-Cl system

The performance and electrical energy consumption of the EC and PEC active chlorine systems with O_v -TiO₂ photoanode were also studied. As shown in Fig. 6a, the degradation efficiency of 4-CP and H₂ generation rate gradually increased with the increase of voltage. This may be

due to the generation rate of RCS from Cl⁻ accelerated under high bias voltage conditions. However, in EC active chlorine system, even when the bias voltage was at 3.0 V, the H₂ generation rate was 171.6 µmol h⁻¹ cm⁻² and the degradation rate of 4-CP was 60% within 60 min, which are far inferior to the performance of PEC-Cl system (198.0 µmol h⁻¹ cm⁻² and 99.9% within 60 min) at the low voltage of 0.5 V. In addition, assuming that the simulated sunlight of PEC system is provided by natural light sources, we monitored the current density of different active chlorine systems (Fig. S21) and estimated their electrical energy consumption in 60 min period (Table S4). The EC system at a voltage of 3.0 V consumed 90.7 J in 60 min, which is much higher than that of 0.023 J for the PEC system at voltage of 0.5 V. The degradation with H₂ generation experiments were also carried out under the standard of a sun (100 mW cm⁻²). As shown in Fig. S22, the degradation rate of

Fig. 6. (a) The performance for degrading 4-CP and simultaneous H_2 generation rate by using O_v -TiO₂ as working electrodes in both EC-Cl system and PEC-Cl systems, (b) the stability of PEC-Cl system by using O_v -TiO₂ as photoanode ([4-CP]₀ = 20 ppm, [NaCl] = 50 mM, [Na₂SO₄] = 0.1 M, + 0.5 V (vs. SCE), pH = 4, simulated sunlight irradiation).

20 ppm 4-CP was 98.0% in 120 min, which indicated that the PEC-Cl system can also be operated efficiently under actual natural sunlight irradiation. These results show that the PEC system can effectively utilize solar energy and reduce the consumption of electricity. Furthermore, the stability of PEC-Cl system with O_v -TiO₂ photoanode was investigated (Fig. 6b). After 10 cycles, the degradation rate of 20 ppm 4-CP was still higher than 96% within 60 min and the H₂ generation rate still remained above 170 µmol h⁻¹ cm⁻². In addition, SEM (Fig. S23) and XRD (Fig. S24) were used to characterize the O_v -TiO₂ photoelectrode after the reaction, and the results showed that the crystal structure and morphology were remain stable. The inset in Fig. S23 b showed the photo of O_v -TiO₂ photoelectrode after the reaction, which was is good evidence that the O_v -TiO₂ does not peel off. It indicates that the PEC-Cl system had commendable durability suggesting its potential for practical applications in water pollution treatment.

4. Conclusions

Effective wastewater treatment and recycling is an ideal method to solve energy and environment issues. Appropriate technologies are required for different types of wastewater. Regarding saline organic wastewater, the treating efficiency of traditional methods is seriously affected by the poor and complex water quality. PEC, as an emerging technology, has unique advantages. The various salts in wastewater are utilized as electrolyte, and a large amount of Cl⁻ provide chlorine source as active chlorine co-processing technology, avoiding additional substance consumption. The photoelectrode is composed of immobilized catalysts, which is easy to be separated and recycled compared with the photocatalysis technology. Furthermore, the PEC technology can generate considerable solar fuel accompanying with the purification of the wastewater, and the electricity consumed is far less than that for electrocatalysis technology. In this work, both experimental and theoretical studies have shown that the PEC-Cl system with Ov-TiO2 photoanode possess powerful degradation and solar fuel production capabilities. In addition, the low by-product concentration also has very little impact on the environment. Besides, although the proposed PEC-Cl system in this work has very good results in the experimental stage, the further researches are still needed to developed, including increasing the size of the photoelectrode and reactor prior to its application in practical wastewater treatment.

Environmental Implication

Effective wastewater treatment and recycling is an ideal method to solve energy and environment issues. In this work, we developed a stable and reliable PEC-Cl system to treat polluted water in an efficient, energy-saving, and environmentally friendly way. The as-designed PEC-Cl system rapidly activated Cl⁻ to drive the deep mineralization of POPs wastewater in a wide pH range (2–12) with simultaneous production of H₂. It can make efficient use of solar energy and reduce the consumption of electricity. Moreover, nearly no toxic by-product of chlorates was produced during this system.

CRediT authorship contribution statement

Jiabao Wu: Investigation, Experiment, Data curation, Writing – original draft. Ying Tao: Investigation, Experiment, Data curation, Writing – original draft. Chi Zhang: Overall revision. Qiong Zhu: Investigation. Dieqing Zhang: Conceptualization, Supervision, Project administration. Guisheng Li: Conceptualization, Supervision, Project administration, Funding acquisition, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFA0211004), National Natural Science Foundation of China (21876113, 22176127, 22022608, 21261140333), the Shanghai Engineering Research Center of Green Energy Chemical Engineering, and "111" Innovation and Talent Recruitment Base on Photochemical and Energy Materials (D18020).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jhazmat.2022.130363.

References

- Bilal, M., Lam, S.S., Iqbal, H.M.N., 2022. Biocatalytic remediation of pharmaceutically active micropollutants for environmental sustainability. Environ. Pollut. 293, 118582.
- Chen, W., Gu, Z., Ran, G., Li, Q., 2021a. Application of membrane separation technology in the treatment of leachate in China: a review. Waste Manag 121, 127–140.
- Chen, X., Huo, X., Liu, J., Wang, Y., Werth, C.J., Strathmann, T.J., 2017. Exploring beyond palladium: catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chem. Eng. J. 313, 745–752.
- Chen, Y., Tong, S., Li, W., Liu, Y., Tan, F., Ge, M., Xie, X., Sun, J., 2021b. Photocatalytic oxidation of SO₂ by TiO₂: Aerosol formation and the key role of gaseous reactive oxygen species. Environ. Sci. Technol. 55 (14), 9784–9793.
- Cheng, Z., Ling, L., Wu, Z., Fang, J., Westerhoff, P., Shang, C., 2020. Novel visible lightdriven photocatalytic chlorine activation process for carbamazepine degradation in drinking water. Environ. Sci. Technol. 54 (18), 11584–11593.
- Coates, J.D., Achenbach, L.A., 2004. Microbial perchlorate reduction: rocket-fueled metabolism. Nat. Rev. Microbiol. 2 (7), 569–580.
- Dai, W., Tao, Y., Zou, H., Xiao, S., Li, G., Zhang, D., Li, H., 2020. Gas-phase photoelectrocatalytic oxidation of NO via TiO₂ nanorod array/FTO photoanodes. Environ. Sci. Technol. 54 (9), 5902–5912.
- Frank, B.P., Smith, C., Caudill, E.R., Lankone, R.S., Carlin, K., Benware, S., Pedersen, J. A., Fairbrother, D.H., 2021. Biodegradation of functionalized nanocellulose. Environ. Sci. Technol. 55 (15), 10744–10757.
- Hou, S., Ling, L., Dionysiou, D.D., Wang, Y., Huang, J., Guo, K., Li, X., Fang, J., 2018. Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter. Environ. Sci. Technol. 52 (11), 6317–6325.
- Jassby, D., Cath, T.Y., Buisson, H., 2018. The role of nanotechnology in industrial water treatment. Nat. Nanotechnol. 13 (8), 670–672.
- Jayakumar, A., Wurzer, C., Soldatou, S., Edwards, C., Lawton, L.A., Masek, O., 2021. New directions and challenges in engineering biologically-enhanced biochar for biological water treatment. Sci. Total. Environ. 796, 148977.
- Ji, Y., Bai, J., Li, J., Luo, T., Qiao, L., Zeng, Q., Zhou, B., 2017. Highly selective transformation of ammonia nitrogen to N₂ based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water Res 125, 512–519.
- Ke, M.K., Huang, G.X., Mei, S.C., Wang, Z.H., Zhang, Y.J., Hua, T.W., Zheng, L.R., Yu, H. Q., 2021. Interface-promoted direct oxidation of p-arsanilic acid and removal of total arsenic by the coupling of peroxymonosulfate and Mn-Fe-mixed oxide. Environ. Sci. Technol. 55 (10), 7063–7071.
- Kim, K.H., Choi, C.W., Choung, S., Cho, Y., Kim, S., Oh, C., Lee, K.S., Lee, C.L., Zhang, K., Han, J.W., Choi, S.Y., Park, J.H., 2022. Continuous oxygen vacancy gradient in TiO₂ photoelectrodes by a photoelectrochemical-driven "self-purification" process. Adv. Energy Mater. 12, 7.
- Kim, S., Piao, G., Han, D.S., Shon, H.K., Park, H., 2018. Solar desalination coupled with water remediation and molecular hydrogen production: a novel solar water-energy nexus. Energy Environ. Sci. 11 (2), 344–353.
- Koo, M.S., Cho, K., Yoon, J., Choi, W., 2017. Photoelectrochemical degradation of organic compounds coupled with molecular hydrogen generation using electrochromic TiO₂ nanotube arrays. Environ. Sci. Technol. 51 (11), 6590–6598.
- Koo, M.S., Chen, X., Cho, K., An, T., Choi, W., 2019. In situ photoelectrochemical chloride activation using a WO₃ electrode for oxidative treatment with simultaneous H₂ evolution under visible light. Environ. Sci. Technol. 53 (16), 9926–9936.
- Li, F., Sun, L., Liu, Y., Fang, X., Shen, C., Huang, M., Wang, Z., Dionysiou, D.D., 2020. A CIO• mediated photoelectrochemical filtration system for highly-efficient and complete ammonia conversion. J. Hazard. Mater. 400, 123246.
- Li, H., Shang, J., Yang, Z., Shen, W., Ai, Z., Zhang, L., 2017. Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity. Environ. Sci. Technol. 51 (10), 5685–5694.

J. Wu et al.

- Li, J., Pang, S.Y., Wang, Z., Guo, Q., Duan, J., Sun, S., Wang, L., Cao, Y., Jiang, J., 2021a. Oxidative transformation of emerging organic contaminants by aqueous permanganate: Kinetics, products, toxicity changes, and effects of manganese products. Water Res 203, 117513.
- Li, X., Yu, J., Jaroniec, M., 2016. Hierarchical photocatalysts. Chem. Soc. Rev. 45 (9), 2603–2636.
- Li, X., Kan, M., Wang, T., Qin, Z., Zhang, T., Qian, X., Kuwahara, Y., Mori, K., Yamashita, H., Zhao, Y., 2021b. The ClO• generation and chlorate suppression in photoelectrochemical reactive chlorine species systems on BiVO₄ photoanodes. Appl. Catal. B Environ. 296.
- Li, X., Kan, M., Wang, T., Qin, Z., Zhang, T., Qian, X., Kuwahara, Y., Mori, K., Yamashita, H., Zhao, Y., 2021d. The ClO• generation and chlorate suppression in photoelectrochemical reactive chlorine species systems on BiVO₄ photoanodes. Appl. Catal. B Environ. 296, 120387.
- Li, Z., Luo, L., Li, M., Chen, W., Liu, Y., Yang, J., Xu, S.M., Zhou, H., Ma, L., Xu, M., Kong, X., Duan, H., 2021c. Photoelectrocatalytic C-H halogenation over an oxygen vacancy-rich TiO₂ photoanode. Nat. Commun. 12 (1), 6698.
- Lian, Z., Tao, Y., Liu, Y., Zhang, Y., Zhu, Q., Li, G., Li, H., 2020. Efficient self-driving photoelectrocatalytic reactor for synergistic water purification and H₂ evolution. ACS Appl. Mater. Interfaces 12 (40), 44731–44742.
- Liao, W., Yang, J., Zhou, H., Murugananthan, M., Zhang, Y., 2014. Electrochemically self-doped TiO₂ nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim. Acta 136, 310–317.
- Lim, J., Yang, Y., Hoffmann, M.R., 2019. Activation of peroxymonosulfate by oxygen vacancies-enriched Cobalt-doped black TiO₂ nanotubes for the removal of organic pollutants. Environ. Sci. Technol. 53 (12), 6972–6980.
- Lin, Y., Yang, C., Wu, S., Li, X., Chen, Y., Yang, W.L., 2020. Construction of built-in electric field within silver phosphate photocatalyst for enhanced removal of recalcitrant organic pollutants. Adv. Funct. Mater. 30 (38), 2002918.
- Liu, Y., Pan, D., Xiong, M., Tao, Y., Chen, X., Zhang, D., Huang, Y., Li, G., 2020. In-situ fabrication SnO₂/SnS₂ heterostructure for boosting the photocatalytic degradation of pollutants. Chin. J. Cata. 41 (10), 1554–1563.
- Liu, Y., Wang, Y., Wu, T., Xu, J., Lin, D., 2022. Synergistic effect of soil organic matter and nanoscale zero-valent iron on biodechlorination. Environ. Sci. Technol. 56 (8), 4915–4925.
- Luo, T., Bai, J., Li, J., Zeng, Q., Ji, Y., Qiao, L., Li, X., Zhou, B., 2017. Self-driven photoelectrochemical splitting of H₂S for S and H₂ recovery and simultaneous electricity generation. Environ. Sci. Technol. 51 (21), 12965–12971.
- Ma, L., Gao, X., Liu, X., Gu, X., Li, B., Mao, B., Sun, Z., Gao, W., Jia, X., Chen, J., 2022. Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes. Chin. Chem. Lett.
- Mei, J., Tao, Y., Gao, C., Zhu, Q., Zhang, H., Yu, J., Fang, Z., Xu, H., Wang, Y., Li, G., 2021. Photo-induced dye-sensitized BiPO₄/BiOCl system for stably treating persistent organic pollutants. Appl. Cata. B Environ. 285, 119841.
- Menzel, N., Ortel, E., Mette, K., Krachnert, R., Strasser, P., 2013. Dimensionally stable Ru/Ir/TiO₂-Anodes with tailored mesoporosity for efficient electrochemical chlorine evolution. ACS Catal. 3 (6), 1324–1333.
- Nosaka, Y., Nosaka, A.Y., 2017. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117 (17), 11302–11336.
- Pan, D., Xiao, S., Chen, X., Li, R., Cao, Y., Zhang, D., Pu, S., Li, Z., Li, G., Li, H., 2019. Efficient photocatalytic fuel cell via simultaneous visible-photoelectrocatalytic degradation and electricity generation on a porous coral-like WO₃/W photoelectrode. Environ. Sci. Technol. 53 (7), 3697–3706.
- Pan, M., Tan, Y.Z., Chew, J.W., 2020. Superior membrane distillation by induction heating of 3D rGO/Nafion/Ni foam for water treatment. J. Membr. Sci. 616, 118609.
- Park, J., Lee, T.H., Kim, C., Lee, S.A., Choi, M.-J., Kim, H., Yang, J.W., Lim, J., Jang, H. W., 2021. Hydrothermally obtained type-IIheterojunction nanostructures of In_2S_3/TiO_2 for remarkably enhanced photoelectrochemical water splitting. Appl. Cata. B Environ. 295, 120276.
- Pu, S., Hou, Y., Yan, C., Ma, H., Huang, H., Shi, Q., Mandal, S., Diao, Z., Chu, W., 2018. In situ coprecipitation formed highly water-dispersible magnetic chitosan nanopowder

for removal of heavy metals and its adsorption mechanism. ACS Sustain. Chem. Eng. 6 (12), 16754–16765.

- Shao, D., Wu, Y., Hu, S., Gao, W., Du, Y., Jia, X., Liu, S., Zhou, M., Chen, J., 2022. Decoupled photoelectrochemical cerium-catalyzed oxydichlorination of alkynes: Slow releasing of chloride ions and chlorine radicals. ACS Sustain. Chem. Eng. 10 (31), 10294–10302.
- Song, R., Chi, H., Ma, Q., Li, D., Wang, X., Gao, W., Wang, H., Wang, X., Li, Z., Li, C., 2021. Highly efficient degradation of persistent pollutants with 3D nanocone TiO₂based photoelectrocatalysis. J. Am. Chem. Soc. 143 (34), 13664–13674.
- Sözen, S., Olmez-Hanci, T., Hooshmand, M., Orhon, D., 2019. Fenton oxidation for effective removal of color and organic matter from denim cotton wastewater without biological treatment. Environ. Chem. Lett. 18 (1), 207–213.
- Sun, J., Bi, H., Jia, H., Su, S., Dong, H., Xie, X., Sun, L., 2020. A low cost paper tissuebased PDMS/SiO₂ composite for both high efficient oil absorption and water-in-oil emulsion separation. J. Clean. Prod. 244, 118814.
- Wang, G., Ling, Y., Wang, H., Yang, X., Wang, C., Zhang, J.Z., Li, Y., 2012. Hydrogentreated WO_3 nanoflakes show enhanced photostability. Energy Environ. Sci. 5, 3.
- Wang, S., Chen, P., Bai, Y., Yun, J.H., Liu, G., Wang, L., 2018a. New BiVO4 Dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 30 (20), e1800486.
- Wang, S., Chen, P., Bai, Y., Yun, J.H., Liu, G., Wang, L., 2018b. New BiVO₄ Dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 30 (20), 1800486.
- Wang, W., Xu, M., Xu, X., Zhou, W., Shao, Z., 2020. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chem. Int. Ed. 59 (1), 136–152.
- Wang, Z., Mao, X., Chen, P., Xiao, M., Monny, S.A., Wang, S., Konarova, M., Du, A., Wang, L., 2019. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. Angew. Chem. Int. Ed. 58 (4), 1030–1034.
- Xiao, S., Wan, Z., Zhou, J., Li, H., Zhang, H., Su, C., Chen, W., Li, G., Zhang, D., Li, H., 2019. Gas-phase photoelectrocatalysis for breaking down nitric oxide. Environ. Sci. Technol. 53 (12), 7145–7154.
- Xu, X., Cai, J., Zhou, M., Du, X., Zhang, Y., 2020. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped blue TiO₂ nanotube arrays with formic acid as electrolyte. J. Hazard. Mater. 382, 121096.
- Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., Liu, R., 2014. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 4, 4596.
- Zhang, Y., Li, J., Bai, J., Shen, Z., Li, L., Xia, L., Chen, S., Zhou, B., 2018. Exhaustive conversion of inorganic nitrogen to nitrogen gas based on a photoelectro-chlorine cycle reaction and a highly selective nitrogen gas generation cathode. Environ. Sci. Technol. 52 (3), 1413–1420.
- Zhang, Y., Li, J., Bai, J., Li, L., Chen, S., Zhou, T., Wang, J., Xia, L., Xu, Q., Zhou, B., 2019. Extremely efficient decomposition of ammonia-N to N₂ Using ClO• from reactions of HO• and HOCl generated in situ on a novel bifacial photoelectroanode. Environ. Sci. Technol. 53 (12), 6945–6953.
- Zhang, Y., Ji, Y., Li, J., Bai, J., Chen, S., Li, L., Wang, J., Zhou, T., Jiang, P., Guan, X., Zhou, B., 2021. Efficient ammonia removal and toxic chlorate control by using BiVO₄/WO₃ heterojunction photoanode in a self-driven PEC-chlorine system. J. Hazard. Mater. 402, 123725.
- Zhao, X., Pan, D., Chen, X., Li, R., Jiang, T., Wang, W., Li, G., Leung, D.Y.C., 2019. g-C₃N₄ photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. Appl. Surf. Sci. 467–468, 658–665.
- Zheng, Z., Lo, I.M.C., 2021. Fabrication of MoS₂@BL-BiVO₄ photoanode with promoted charge separation for photoelectrochemical sewage treatment to simultaneously degrade PPCPs, disinfect E. coli, and produce H₂: performance, mechanisms, and influence factors. Appl. Cata. B Environ. 299, 120636.
- Zheng, Z., He, J., Dong, C., Lo, I.M.C., 2021. Photoelectrochemical sewage treatment by sulfite activation over an optimized BiVO₄ photoanode to simultaneously promote PPCPs degradation, H₂ evolution and E. coli disinfection. Chem. Eng. J. 419, 129418.