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a b s t r a c t 

This paper deals with dissipativity of the variable-stepsize Runge-Kutta methods applied 

to nonlinear Volterra functional differential equations in Hilbert spaces. The conditional 

dissipativity of variable-stepsize Runge-Kutta methods is analyzed and hence some new 

numerical dissipative criteria are derived. The resulting dissipative criteria extend and im- 

prove the existing results. Especially, for the algebraically stable variable-stepsize Runge- 

Kutta methods, we obtain a sharper dissipative result. In the end, we apply some con- 

crete variable-stepsize Runge-Kutta methods to the three classes of nonlinear Nicholson’s 

blowflies models. The presented numerical examples further illustrate the theoretical re- 

sults. 
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1. Introduction 

In this paper, we study the long time behavior of variable stpesize Runge-Kutta (RK) methods for Volterra functional 

differential equations (VFDEs, or rewritten as Retarded functional differential equations, RFDEs) {
y ′ (t) = f (t , y (t ) , y (·)) , t ≥ 0 , 

y (t) = φ(t) , −τ ≤ t ≤ 0 , 
(1.1) 

where τ is a positive constant, φ is a given initial function. Equations of this type arise in many applications such as con-

trol theory, population dynamics, heat conduction in materials with thermal memory, biosciences, and so on (see [1,25,64] , 

and references therein). Especially, Nicholson blowflies models have been extensively used to model various biological phe- 

nomena including production of blood cells (see, e.g., [4,6,16,32,33,39,42,43] ). Much work has been devoted to the stability 
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and convergence of numerical methods for VFDEs (see, e.g., [2,3,15,24,29–31,35,36,51,52,55] ). In this paper, we investigate 

the dissipativity of numerical methods for VFDEs (1.1) and apply the results obtained to Nicholson blowflies model with 

variable delay or distributed delay, and diffusive Nicholson blowflies equations with multiple delays. 

Many interesting problems in physics and engineering are modeled by dissipative dynamical systems which are char- 

acterized by the property of possessing a bounded absorbing set that all trajectories enter in a finite time and thereafter

remain inside (see, e.g., [38,41,44] ). From a computational point of view, it is important to study the potential of numeri-

cal methods in preserving the qualitative behavior of the underlying system. At the end of the last century, many papers

have been focused on the dissipativity analysis of the exact and numerical solution of ordinary differential equations (ODEs, 

see [18,19,23,40,41] ). Delay different equations (DDEs) and more general VFDEs are essentially different from ODEs because 

they are infinite dimensional in the sense of their phase space. Since the last decade, a very intensive investigation of nu-

merical methods for dissipative DDEs has been started (see, for example, [13,20–22,45–47] ). The numerical dissipativity of 

integro-differential equations (IDEs) and delay integro-differential equations (DIDEs) has been also investigated [11,12,37] . 

Recently, the exact and numerical dissipativity of neutral delay differential equations (NDDEs, see, [14,49,50,53,56,60,65] ) 

and neutral delay integro-differential equations (NDIDEs, see, e.g., [34,61,62,66] ) also have been investigated. The dissipative 

investigation of equations (1.1) is less developed than the study of their particular cases, DDEs and DIDEs. Among those 

papers related to our discussions on (1.1) we refer to the papers [48,52,58,59,63] . Observe that all these numerical dissipa-

tivity investigations into VFDEs including its special cases, DDEs, IDEs and DIDEs, are based on numerical approximation by 

fixed time-stepping methods. However, most algorithms used in practice allow the timesteps to change from one step to the 

next. In fact, variable stepsizes are often essential to obtain computationally efficient, accurate results for solutions of time 

dependent differential equation with different time scales since the variable step-size methods allow us take different time 

stepsizes for different time scales, i.e., small time step-sizes for the time domain with solution rapidly varying and large for

the time domain with solutions slowly changing (see, e.g., recent paper [57] ). For VFDEs, variable stepsizes methods are even

more important because the solution to this class of equations is generally not sufficiently smooth and has breaking points 

(see, e.g., [2,3,25] ). Then, one of the purpose of this paper is to study the numerical dissipativity of the variable-stepsize RK

methods applied to the nonlinear VFDEs (1.1) because they are one of the most popular time-stepping methods (see, e.g., 

[8,9,17,29] ). 

Let us denote by H the real or complex Hilbert space with inner product 〈·, ·〉 and corresponding norm ‖ · ‖ . Let X be

a dense continuously embedded subspace of H , and B (0 , r) ≡ { x ∈ H : ‖ x ‖ < r} for any r > 0 . Let Z + denote the set of all

positive integers. Define C X [ a, b] as the set of all continuous functions on interval [ a, b] . Suppose that f : [0 , + ∞ ) × X ×
 X [ −τ, + ∞ ) → H is a locally Lipschitz continuous function and satisfies the following conditions: 


 e 〈 f (t, y, ψ(·)) , y 〉 ≤ γ + α‖ y ‖ 

2 + β max 
t −μ2 (t ) ≤ξ≤t −μ1 (t ) 

‖ ψ( ξ ) ‖ 

2 , 

t ≥ 0 , y ∈ X , ψ ∈ C X [ −τ, + ∞ ) , (1.2) 

where the functions μ1 (t) and μ2 (t) are assumed to satisfy 

0 ≤ μ1 (t) ≤ μ2 (t) ≤ t + τ, ∀ t ≥ 0 , (1.3) 

t − μ2 (t) → + ∞ as t → + ∞ , (1.4) 

and α < 0 , β ≥ 0 , γ ≥ 0 are constants. Note that the conditions (1.3) and (1.4) allow the delay to be infinite. Then the

proportional delay differential equations are covered by the initial value problem (1.1) . 

A bounded closed set B is called an absorbing set for (1.1) if ∀ φ ∈ C X [ −τ, 0] , there exists t ∗ = t ∗(φ) such that y (t) ∈
B ∀ t ≥ t ∗. The system (1.1) is termed dissipative if a bounded absorbing set exists. Then under the structural assumption

(1.2), (1.1) is dissipative as stated in the following theorem [59] . 

Proposition 1.1 (see Wen, Yu and Wang [59] ) . Suppose that y (t) is a solution of the problem (1.1) satisfying the condition

(1.2) –(1.4) and 

α + β < 0 . (1.5) 

Then 

(i) for any given ε > 0 , there exists a positive number t ∗ = t ∗(‖ φ‖ , ε) , such that 

‖ y (t) ‖ 

2 ≤ γ

−(α + β) 
+ ε, ∀ t ≥ t ∗; (1.6) 

ii) for any given ε > 0 , the system (1.1) is dissipative with an absorbing set 

B = B (0 , 
√ 

γ / [ −(α + β)] + ε) . 

The problem whether the numerical and exact solutions admit a related asymptotic behavior on the unbounded domain 

is an important theoretical question about their numerical approximations. On the basis of the above analytical dissipativity 

results, Wen et al. [63] and Wang [52] investigated simultaneously the numerical dissipativity of (k, l) -algebraically stable 

RK methods. It follows from the performed analysis in Wen et al. [63] that if 

h (α + pβ) < 2 l, (1.7) 
2 
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where h is a fixed time stepsize and 

p = 

dc 2 π
C 1 − C 2 

≥ 1 (1.8) 

(the definitions of d, c π , C 1 and C 2 are given in Sections 2 and 3 ), then a (k, l) -algebraically stable RK method with k ≤ 1 for

nonlinear VFDEs (1.1) is dissipative. Comparing the conditions (1.5) and (1.7) for the numerical and exact dissipativity, We 

can find a gap between these conditions. On the one hand, it is easy to verify that a (k, l) -algebraically stable RK method

with k ≤ 1 has l ≤ 0 , which implies that 

α + pβ < 0 . (1.9) 

Condition (1.9) with p > 1 is obviously stronger than the exact dissipative condition (1.5) . Comparison of conditions (1.9) and

(1.5) also reveals that the methods with p = 1 can retain the dissipative property of the underlying system for all stepsize

h > 0 . For this type of methods, from the result in Wen et al. [63] we can only find one, the implicit Euler method with

linear interpolation. Thus, searching other methods with p = 1 motivate us to study further the dissipativity of the high

order RK methods. On the other hand, when condition (1.5) holds, which implies the system (1.1) is dissipative, but for a

(k, l) -algebraically stable RK method with p > 1 , if 

α + pβ ≥ 0 , (1.10) 

we can not obtain any results for this method from the paper [63] . The aim of this paper is, among others, to fill in this

gap and investigate the conditional dissipativity of numerical methods, that is, under a stepsize restriction, the method can 

preserve exactly the dissipativity of the underlying system. Note that the conditional stability of RK methods for variable 

delay DDEs has been investigated in Wang and Li [51] . 

Nicholson blowflies model and its formulations using discrete, periodic, and diffusive equations have been extensively 

studied in the literature; see [4,6,16,32,33,39,42,43] and references therein. In this paper, we will apply our theoretical results 

and dissipativity-preserving numerical methods to nonlinear Nicholson blowflies, including variable delay model, integro- 

differential Nicholson’s model, and diffusive model with multiple delays. 

The paper is organized as follows. In Section 2 , for the presentation of the subsequent results, we introduce the variable-

stepsize RK methods applied to VFDEs and review some related concepts and conclusions. In Section 3 , the conditional dissi-

pativity of variable-stepsize RK methods is analyzed and hence some numerical dissipative criteria are derived. In Section 4 ,

in order to relax the restriction of condition (1.9) and reduce the value of parameter p, a sharper approach to compute C 1 
and C 2 is introduced. In Section 5 , we further study the dissipativity of algebraically stable RK methods and obtain a sharper

numerically dissipative result. In Section 6 , for giving an numerical illustration to our dissipative results, we apply some 

concrete variable-stepsize RK methods to the three classes of nonlinear Nicholson’s blowflies models. The presented numer- 

ical examples verify our theoretical results. In Section 7 , we summary the whole paper and compare the existed correlative

results and our findings. 

2. The variable-stepsize RK methods applied to VFDEs 

In this section, we will consider the application of variable-stepsize RK methods to (1.1) . Let (A, b T , c) denote a given

RK method characterized by the s × s matrix A = (a i j ) and vectors b = [ b 1 , . . . , b s ] 
T , c = [ c 1 , . . . , c s ] 

T . In this paper we always

assume that 
∑ s 

j=1 b j = 1 and c i = 

∑ s 
j=1 a i j ∈ [0 , 1] . An s -stage RK method (A, b T , c) for ODEs together with an appropriate

piecewise interpolation operator πh can generally leads to an s -stage RK method (A, b T , c, πh ) : ⎧ ⎨ 

⎩ 

y h (t) = π h (t;φ, y 1 , y 2 , . . . , y n +1 ) , −τ ≤ t ≤ t n +1 , 

Y (n ) 
i 

= y n + h n +1 

∑ s 
j=1 a i j f (t n, j , Y 

(n ) 
j 

, y h (·)) , i = 1 , . . . , s, 

y n +1 = y n + h n +1 

∑ s 
j=1 b j f (t n, j , Y 

(n ) 
j 

, y h (·)) , 
(2.1) 

for solving problem (1.1) in VFDEs. Here, t n are mesh points, h n +1 = t n +1 − t n , t n, j = t n + c j h n +1 , the interpolation function

y h (t) is an approximation to the true solution y (t) of the problem (1.1) , y n and Y (n ) 
j 

are approximations to y (t n ) and y (t n, j ) ,

respectively. For simplicity, we always assume that the interpolation operator πh satisfies the following condition: 

max 
t ∗≤t≤t n 

‖ π h (t;φ, y 1 , . . . , y n ) ‖ ≤
{

c π max η(t ∗) ≤i ≤n ‖ y i ‖ , η(t ∗) ≥ 0 , 

c π max { max 1 ≤i ≤n ‖ y i ‖ , max −τ≤t≤0 ‖ φ(t) ‖ } , η(t ∗) < 0 , 
(2.2) 

where −τ ≤ t ∗ ≤ t n , y i ∈ X , i = 1 , 2 , . . . , n. The integer n is assumed to be greater than N , where N denotes the number

of additional starting values, which are occasionally needed for the interpolation at the first integration step. The function 

η(t) is defined by 

η(t) = min 

{
m : m ∈ Z + , t m 

≥ t 
}

− p ∗, (2.3) 

where p ∗ denotes a positive integer depending only on the procedure of the interpolation. The constant c π ≥ 1 is of moder-

ate size and independent of t ∗, n, y i and φ. In this paper we consider quasi-uniform meshes, that is, there exists a constant

c ∗ ≥ 1 such that 1 /c ∗ ≤ h n /h n +1 ≤ c ∗. Let h min = inf n ∈ Z + h n and h max = sup n ∈ Z + h n . 
3 
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We will assume throughout the paper that for every implicit Eq. (2.1) there exists a unique solution Y (n ) =
[ Y (n ) 

1 
, . . . , Y (n ) 

s ] ∈ X 

s . For the sake of brevity, we introduce the following notations. For any nonnegative diagonal matrix

D = diag (d 1 , d 2 , . . . , d s ) , we define a pseudo-inner product and the corresponding pseudo-norm on X 

s by 

〈 Y, Z〉 D = 

s ∑ 

j=1 

d j 〈 Y j , Z j 〉 , ‖ Y ‖ D = 〈 Y, Y 〉 1 / 2 
D 

, 

Y = [ Y 1 , Y 2 , . . . , Y s ] ∈ X 

s , Z = [ Z 1 , Z 2 , . . . , Z s ] ∈ X 

s . 

It is easy to verify that when D is positive definite, they are the inner product and the norm on X 

s respectively. 

The following concepts for RK method (A, b T , c) will play the important roles in the subsequent analysis. 

Definition 2.1. (see Burrage and Butcher [5] ) Let k, l be real constants. A RK method (A, b T , c) (or (A, b T , c, πh ) ) is said to

be (k, l) -algebraically stable if there exists a diagonal nonnegative matrix D = diag (d 1 , d 2 , . . . , d s ) such that M = [ M i j ] is

nonnegative definite, where 

M = 

[
k − 1 − 2 le T De e T D − b T − 2 le T DA 

De − b − 2 lA 

T De DA + A 

T D − bb T − 2 lA 

T DA 

]
, (2.4) 

A = [ a i j ] ∈ R s ×s , b = [ b 1 , b 2 , . . . , b s ] 
T ∈ R s and e = [1 , 1 , . . . , 1] T . In particular, a (1,0)-algebraically stable method is called alge-

braically stable. 

Some (k, l) -algebraically stable RK methods have been given in Burrage and Butcher [5] and Hairer and Wanner [17] .

Generally, given l, we can calculate the value k . Since D is a nonnegative matrix, it is easy to verify that l ≤ 0 if k ≤ 1 . 

Definition 2.2. The stability function of a RK method (A, b T , c) is defined by 

R (z) = 1 + zb T (I − zA ) e. (2.5) 

Definition 2.3. (See [17] ). The method (A, b T , c) is said to be strongly stable at ∞ if 

| R (∞ ) | = | 1 − b T A 

−1 e | < 1 , (2.6) 

and said to be stiffly accurate if 

a si = b i , i = 1 , 2 , . . . , s. (2.7) 

Definition 2.4. (See [7,9] ). A method is DJ-reducible if, for some non-empty index set S ⊂ { 1 , . . . , s } , 
b j = 0 for j ∈ S and a i j = 0 for i �∈ S, j ∈ S. (2.8) 

It is otherwise DJ-irreducible. 

We recall from Dahlquist and Jeltsch [7] (see also [9] ), that a DJ-irreducible, algebraically stable method satisfies 

b i > 0 , i = 1 , 2 , . . . , s. (2.9) 

Definition 2.5. (see [20,23,41] ). A RK method (A, b T , c, πh ) is said to be dissipative if, whenever the method is applied with

variable stepsize h n to a dynamical system of the form (1.1) subject to (1.2) –(1.5) , there exists a constant r such that, for any

function φ(t) , there exists an N 0 ( ̄φ, h min , h max ) , φ̄ = max 
{

sup −τ≤t≤0 ‖ φ(t) ‖ , max 1 ≤i ≤N ‖ y i ‖ 
}
, such that 

‖ y n ‖ ≤ r, n ≥ N 0 . (2.10) 

3. The dissipativity of variable-stepsize RK methods 

This section will focus on the dissipative analysis of variable-stepsize RK methods for system (1.1) and establish the 

dissipative criteria of the methods. To this end, we first give a lemma. 

Lemma 3.1. Let problem (1.1) satisfy the condition (1.2) –(1.4) . Assume that the method (A, b T , c, πh ) for (1.1) is (k, l) -

algebraically stable with nonnegative matrix D = diag (d 1 , d 2 , . . . , d s ) and 0 ≤ k ≤ 1 , the interpolation operator πh satisfies con-

dition (2.2) , and there exist constants C 1 > C 2 ≥ 0 , which depend only on the method, such that 


 e 〈 Y (n ) , DY (n ) 〉 ≥ C 1 ‖ y n +1 ‖ 

2 − C 2 ‖ y n ‖ 

2 (3.1) 

and 

2(αh n +1 − l)(C 1 − C 2 ) + 2 c 2 πβdh n +1 ≤ 1 − k. (3.2) 

Then, when αh n +1 ≤ l, we have 

‖ y n +1 ‖ 

2 ≤
{
σ (h n +1 ) max ˆ n ≤i ≤n ‖ y i ‖ 

2 + r 1 (h n +1 ) , f or η( ̂ t n ) ≥ 0 , 

σ (h n +1 ) max 
{

max 1 ≤i ≤n ‖ y i ‖ 

2 , φ̄2 
}

+ r 1 (h n +1 ) , f or η( ̂ t n ) < 0 , 
(3.3) 
4 
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where the functions σ (h ) and r 1 (h ) are defined by 

σ (h ) = 

k − 2(αh − l) C 2 + 2 c 2 πβdh 

1 − 2(αh − l) C 1 
, r 1 (h ) = 

2 hdγ

1 − 2(αh − l) C 1 − 2 c 2 πβdh 

, 

and 

d = 

s ∑ 

j=1 

d j , ˆ t n = min 

1 ≤i ≤s 
{ t n + c i h n +1 − μ2 (t n + c i h n +1 ) } , ˆ n = min 

{
n, η( ̂ t n ) 

}
. 

Proof. As in Burrage and Butcher [5] and Humphries and Stuart [23] , we can easily obtain that 

‖ y n +1 ‖ 

2 − k ‖ y n ‖ 

2 − 2 

s ∑ 

j=1 

d j 
 e 〈 Y (n ) 
j 

, h n +1 f (t n, j , Y 
(n ) 
j 

, y h (·)) − lY (n ) 
j 

〉 = −
s ∑ 

i =1 

s ∑ 

j=1 

M i j 〈 Q i , Q j 〉 , (3.4) 

where Q 1 = y n , Q i = h n +1 f (t n,i −1 , Y 
(n ) 

i −1 
, y h (·)) , i = 2 , 3 , . . . , s + 1 . 

Using the (k, l) -algebraic stability of the method and (1.2) , we have 

‖ y n +1 ‖ 

2 ≤ k ‖ y n ‖ 

2 + 2 h n +1 dγ + 2(αh n +1 − l) ‖ Y (n ) ‖ 

2 
D + 2 βdh n +1 max 

ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 . (3.5) 

By the condition (3.1) and αh n +1 ≤ l, from the above inequality, we further give 

‖ y n +1 ‖ 

2 ≤ k ‖ y n ‖ 

2 + 2 h n +1 dγ + 2(αh n +1 − l) 
[
C 1 ‖ y n +1 ‖ 

2 − C 2 ‖ y n ‖ 

2 
]

+ 2 βdh n +1 max 
ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 , 

which leads to 

[ 1 − 2(αh n +1 − l) C 1 ] ‖ y n +1 ‖ 

2 ≤ [ k − 2(αh n +1 − l) C 2 ] ‖ y n ‖ 

2 + 2 h n +1 dγ + 2 βdh n +1 max 
ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 . (3.6) 

By means of the canonical condition (2.2) , we get 

max 
ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 = max 
ˆ t n ≤t≤t n +1 

‖ π h (t;ϕ, y 1 , . . . , y n +1 ) ‖ 

2 

≤
{

c 2 π max η( ̂ t n ) ≤i ≤n +1 ‖ y i ‖ 

2 , η( ̂ t n ) ≥ 0 , 

c 2 π max 
{

max 1 ≤i ≤n +1 ‖ y i ‖ 

2 , max −τ≤t≤0 ‖ φ(t) ‖ 

2 
}
, η( ̂ t n ) < 0 . 

(3.7) 

Now we consider the following two cases successively. 

Case 1. η( ̂ t n ) ≥ 0 . In this case, substitute (3.7) into (3.6) to obtain 

[ 1 − 2(αh n +1 − l) C 1 ] ‖ y n +1 ‖ 

2 ≤ [ k − 2(αh n +1 − l) C 2 ] ‖ y n ‖ 

2 + 2 h n +1 dγ

+2 βdh n +1 c 
2 
π max 

η( ̂ t n ) ≤i ≤n +1 
‖ y i ‖ 

2 . (3.8) 

If max η( ̂ t n ) ≤i ≤n +1 ‖ y i ‖ 2 = ‖ y n +1 ‖ 2 , noting that condition (3.2) implies 1 − 2(αh n +1 − l) C 1 − 2 βc 2 π dh n +1 > 0 and 

k − 2(αh n +1 − l) C 2 
1 − 2(αh n +1 − l) C 1 − 2 c 2 πβdh n +1 

≤ k − 2(αh n +1 − l) C 2 + 2 c 2 πβdh n +1 

1 − 2(αh n +1 − l) C 1 
, 

then we have 

‖ y n +1 ‖ 

2 ≤ k − 2(αh n +1 − l) C 2 
1 − 2(αh n +1 − l) C 1 − 2 c 2 πβdh n +1 

‖ y n ‖ 

2 + 

2 h n +1 dγ

1 − 2(αh n +1 − l) C 1 − 2 βc 2 π dh n +1 

≤ σ (h n +1 ) ‖ y n ‖ 

2 + r 1 (h n +1 ) ; (3.9) 

otherwise, (3.8) yields 

‖ y n +1 ‖ 

2 ≤ k − 2(αh n +1 − l) C 2 + 2 c 2 πβdh n +1 

1 − 2(αh n +1 − l) C 1 
max 

η( ̂ t n ) ≤i ≤n 
‖ y i ‖ 

2 + 

2 h n +1 dγ

1 − 2(αh n +1 − l) C 1 
. (3.10) 

Case 2. η( ̂ t n ) ≤ 0 . It follows from (3.6) and (3.7) that 

[ 1 − 2(αh n +1 − l) C 1 ] ‖ y n +1 ‖ 

2 ≤ [ k − 2(αh n +1 − l) C 2 ] ‖ y n ‖ 

2 + 2 h n +1 dγ

+2 βdh n +1 c 
2 
π max 

{ 
max 
1 ≤i ≤n 

‖ y i ‖ 

2 , max 
−τ≤t≤0 

‖ φ(t) ‖ 

2 
} 
. (3.11) 

Then, following a similar line, (3.11) yields (3.3) . 

Thus, the proof of Lemma 3.1 is completed. �

Notice that for the case of β = 0 , we get the following inequality 

‖ y n +1 ‖ 

2 ≤ k − 2(αh n +1 − l) C 2 
1 − 2(αh n +1 − l) C 1 

‖ y n ‖ 

2 + 

2 h n +1 dγ

1 − 2(αh n +1 − l) C 1 
, αh n +1 ≤ l. (3.12) 
5 
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Based on Lemma 3.1 , we give the main result of this section. 

Theorem 3.1. Let problem (1.1) satisfy condition (1.2) –(1.4) . Assume that the method (A, b T , c, πh ) for (1.1) is (k, l) -algebraically

stable with nonnegative matrix D = diag (d 1 , d 2 , . . . , d s ) and 0 ≤ k ≤ 1 , the interpolation operator πh satisfies condition (2.2) ,

and there exist constants C 1 > C 2 ≥ 0 , which depend only on the method, such that (3.1) holds. Then the method is dissipative

whenever 

αh n +1 ≤ l, (α + pβ) h n +1 < q, ∀ n ≥ 1 , (3.13) 

where 

p = 

dc 2 π
C 1 − C 2 

, q = l + 

1 − k 

2(C 1 − C 2 ) 
. 

Proof. As done in Li [29] , we can construct a strictly increased sequence of integers { n � 

} which diverges to + ∞ as � →
+ ∞ , such that 

t − τ2 (t) > t n � + p ∗ , ∀ t > t n �+1 
, 

where n 0 = 0 . In fact, suppose that n � 

(� ≥ 0) has been chosen appropriately. Since lim t→ + ∞ 

(t − τ2 (t)) = + ∞ , we can

get a constant M 1 > 0 such that for all t > M 1 , the inequality t − τ2 (t) > t n � 

+ p ∗ holds. Since lim n → + ∞ 

t n = + ∞ , we can get

a constant M 2 > 0 such that for all n ≥ M 2 , the inequality t n > M 1 holds. We thus choose n �+1 = max { n � 

+ 1 , M 2 , N } , in

order to have the relations n �+1 > n � 

and 

ˆ n =: min 

{
n, η( ̂ t n ) 

}
> n � 

, n ≥ n �+1 . (3.14) 

Observe first that condition (α + pβ) h n +1 < q implies that (3.2) holds. Then for any given integers � ≥ 1 and j =
1 , 2 , . . . , n �+1 − n � 

, it follows from (3.3) that 

‖ y n � + j ‖ 

2 ≤ �(h min , h max ) max 
̂ n � + j−1 ≤i ≤n � + j−1 

‖ y i ‖ 

2 + �(h min , h max ) 

≤ �(h min , h max ) max 
n �−1 +1 ≤i ≤n � + j−1 

‖ y i ‖ 

2 + �(h min , h max ) , (3.15) 

where 

�(h min , h max ) = 

{
σ (h min ) if α(C 1 k − C 2 ) + c 2 πβd(1 + 2 lC 1 ) < 0 , 

σ (h max ) if α(C 1 k − C 2 ) + c 2 πβd(1 + 2 lC 1 ) ≥ 0 ; (3.16) 

�(h min , h max ) = 

{
r 1 (h min ) if 1 + 2 lC 1 < 0 , 

r 1 (h max ) if 1 + 2 lC 1 ≥ 0 . 
(3.17) 

Then we further have 

max 
n � <i ≤n �+1 

‖ y i ‖ 

2 ≤ �(h min , h max ) max 
n �−1 <i ≤n �+1 

‖ y i ‖ 

2 + �(h min , h max ) , (3.18) 

where we have used the fact that when α(C 1 k − C 2 ) + c 2 πβd(1 + 2 lC 1 ) < 0 the function σ (h ) is monotone decreasing, and

conversely it is monotone increasing. The similar property of the function r 1 (h ) is also used here. 

As an important step toward the proof of this theorem, we show that 

max 
n � <i ≤n �+1 

‖ y i ‖ 

2 ≤ �(h min , h max ) max 
n �−1 <i ≤n � 

‖ y i ‖ 

2 + 

�(h min , h max ) 

1 − �(h min , h max ) 
, (3.19) 

where we have used �(h min , h max ) < 1 which can be derived from (α + pβ) h n < q, n ∈ Z + . 
In fact, if max n �−1 <i ≤n �+1 

‖ y i ‖ 2 = max n � 

<i ≤n �+1 
‖ y i ‖ 2 , from (3.18) , one easily gets 

max 
n � <i ≤n �+1 

‖ y i ‖ 

2 ≤ �(h min , h max ) max 
n � <i ≤n �+1 

‖ y i ‖ 

2 + �(h min , h max ) , 

which leads to 

max 
n � <i ≤n �+1 

‖ y i ‖ 

2 ≤ �(h min , h max ) 

1 − �(h min , h max ) 
; (3.20) 

otherwise, (3.18) yields 

max 
n � <i ≤n �+1 

‖ y i ‖ 

2 ≤ �(h min , h max ) max 
n �−1 <i ≤n � 

‖ y i ‖ 

2 + �(h min , h max ) . (3.21) 

Now, from (3.19) , by induction, we have 

max 
n � <i ≤n �+1 

‖ y i ‖ 

2 ≤ ( �(h min , h max ) ) 
j 

max 
n �− j <i ≤n �− j+1 

‖ y i ‖ 

2 + 

�(h min , h max ) 

1 − �(h min , h max ) 

j−1 ∑ 

j=0 

( �(h min , h max ) ) 
j 
. (3.22) 
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Then for any ε > 0 , letting 

r(h min , h max ) = 

√ 

�(h min , h max ) 

1 − �(h min , h max ) 
+ ε, 

and using (3.22) , we have that there exists an N 0 , which depends on φ(t) , additional starting values y 1 , . . . , y N , h min , and

h max , such that 

‖ y n ‖ ≤ r(h min , h max ) , n ≥ N 0 . 

This completes the proof. �

If we go into the details of the induction, we can obtain the following inequality 

‖ y n ‖ ≤ r(h min , h max ) = 

√ 

�(h min , h max ) 

1 − �(h min , h max ) 
+ ε, n ≥ N 0 . (3.23) 

As a matter of fact, if there exists an integer � ≥ 1 such that (3.20) holds, then for max n �+1 <i ≤n �+2 
‖ y i ‖ 2 , we have, from

(3.20) 

max 
n �+1 <i ≤n �+2 

‖ y i ‖ 

2 ≤ �(h min , h max ) 

1 − �(h min , h max ) 
;

or, from (3.21) , 

max 
n �+1 <i ≤n �+2 

‖ y i ‖ 

2 ≤ �(h min , h max ) max 
n � <i ≤n �+1 

‖ y i ‖ 

2 + �(h min , h max ) 

≤ �(h min , h max ) 
�(h min , h max ) 

1 − �(h min , h max ) 
+ �( h min , h max ) 

= 

�(h min , h max ) 

1 − �(h min , h max ) 
. (3.24) 

Then by induction, we get (3.23) . In the other case where for any integer � ≥ 1 , (3.20) doesn’t hold, we get (3.23) from

(3.21) . 

In the practical usage of Theorem 3.1 , for a (k, l) −algebraically stable RK method, we can consider the following two

cases: 

Case 1. The condition (1.9) holds, that is, α + pβ < 0 . Then when stepsize h n +1 satisfies 

max 

{
l 

α
, 

q 

α + pβ

}
≤ h n +1 , 

this method is dissipative; especially, for an algebraically stable RK method, we have the following corollary which states 

that for any variable stepsize this method is dissipative. 

Corollary 3.1. Let problem (1.1) satisfy condition (1.2) –(1.4) . Assume that the method (A, b T , c, πh ) for (1.1) is algebraically stable,

the interpolation operator πh satisfies condition (2.2) , and there exist constants C 1 > C 2 ≥ 0 , which depend only on the method,

such that (3.1) holds. Then, for any variable stepsize, the method (A, b T , c, πh ) is dissipative whenever α + pβ < 0 with 

p = 

c 2 π
C 1 − C 2 

. 

Proof. Noting that in this case, D = B = diag (b 1 , b 2 , . . . , b s ) , α(C 1 k − C 2 ) + c 2 πβd(1 + 2 lC 1 ) = α(C 1 − C 2 ) + c 2 πβd < 0 and σ (h )

is a decreasing function, as done in Theorem 3.1 , we can easily prove this corollary. �

Case 2. The condition (1.10) holds, that is, α + pβ ≥ 0 , and α + β < 0 , which implies that the underlying system

is dissipative. Let us emphasize that for this case we can not obtain any results from previous literatures. But from

Theorem 3.1 when q > 0 we can choose the stepsize h n +1 satisfying 

l 

α
≤ h n +1 < 

q 

α + pβ
, 

such that this method is dissipative. 

Now let us give some examples to illustrate these cases. 

Example 3.1. Consider one-leg θ-method 

θ θ−−−−−−−−−−
1 

where we assume θ ≥ 1 / 2 . From [5] , we know that when l < 1 /θ it is (k, l) -algebraically stable with k = χ2 and 

χ = 

{ 

1+ l(1 −θ ) 
1 −lθ

, l ≥ − 2 θ−1 
2 θ (1 −θ ) 

, 

1 −θ
θ

, l ≤ − 2 θ−1 
2 θ (1 −θ ) 

. 
7 
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On the other hand, we have 

‖ Y (n ) ‖ 

2 = ‖ θy n +1 + (1 − θ ) y n ‖ 

2 ≥ (2 θ − 1)[ θ‖ y n +1 ‖ 

2 − (1 − θ ) ‖ y n ‖ 

2 ] , (3.25) 

which implies that the method satisfies condition (3.1) with C 1 = (2 θ − 1) θχ and C 2 = (2 θ − 1)(1 − θ ) χ . Then when

α + pβ = α + 

β
(2 θ−1) 2 

< 0 , we can choose l = 0 such that for any variable stepsize, this method with piecewise linear inter-

polation is dissipative. In particular, for the backward Euler method, p = 1 , which implies that the backward Euler method

with piecewise linear interpolation can preserve the dissipativity of the underlying systems. When p = 

1 
(2 θ−1) 2 

> 1 and 

β < −α ≤ pβ, we can choose l = − 2 θ−1 
2 θ (1 −θ ) 

and stepsizes satisfying 

2 θ − 1 

2 αθ(1 − θ ) 
≤ h min ≤ h max < 

2(2 θ − 1) 

(2 θ − 1) 2 α + β
(3.26) 

such that (3.13) holds, and therefore this method is dissipative under this stepsize restriction. 

4. The computation of constants C 1 and C 2 

It is remarkable that the inequality (3.1) and the constants C 1 and C 2 in it play the important role in the above analysis. 

In view of this, the author in Li [29] presented an approach to compute them for two classes of algebraically stable RK

methods: (i) A nonsingular, b > 0 , and strongly stable at ∞ ; (ii) b > 0 and stiffly accurate. In order to compute C 1 and C 2 
more accurately, in the following, we give a theorem for strongly stable RK methods. 

Theorem 4.1. Assume that RK method (A, b T , c, πh ) is DJ-irreducible and strongly stable at ∞ . Then, for matrix D =
diag (d 1 , d 2 , . . . , d s ) with d i > 0 (i = 1 , 2 , . . . , s ) , the inequality (3.1) holds with 

C 1 = λ(1 − δ) , C 2 = λ(1 − δ) δ, (4.1) 

where 

λ = 

( 

s ∑ 

j=1 

d −1 
j 

u 

2 
j 

) −1 

, [ u 1 , . . . , u s ] = lim 

ε→ 0 
b T (A + εI) −1 , δ = | R (∞ ) | < 1 . 

Proof. Let us first suppose that A is nonsingular and denote the elements of its inverse by ω i j . From the second equality of

(2.1) we get 

Q i +1 = 

s ∑ 

j=1 

ω i j Y 
(n ) 
j 

−
( 

s ∑ 

j=1 

ω i j 

) 

y n , i = 1 , 2 , . . . , s. (4.2) 

Insert them into the third equality of (2.1) to yield 

y n +1 = R (∞ ) y n + 

s ∑ 

j=1 

( 

s ∑ 

i =1 

b i ω i j 

) 

Y (n ) 
j 

. (4.3) 

Then by using the Cauchy-Schwarz inequality we get ⎡ 

⎣ 

s ∑ 

j=1 

d −1 
j 

( 

s ∑ 

i =1 

b i ω i j 

) 2 
⎤ 

⎦ 

1 / 2 [ 

s ∑ 

j=1 

d j ‖ Y (n ) 
j 

‖ 

2 

] 1 / 2 

≥ ‖ y n +1 − R (∞ ) y n ‖ 

≥ | ‖ y n +1 ‖ − δ‖ y n ‖ | , (4.4) 

and consequently we have 

s ∑ 

j=1 

d j ‖ Y (n ) 
j 

‖ 

2 ≥ λ( ‖ y n +1 ‖ − δ‖ y n ‖ ) 
2 ≥ λ(1 − δ) 

(‖ y n +1 ‖ 

2 − δ‖ y n ‖ 

2 
)
. (4.5) 

If the RK matrix A is singular, we replace it everywhere by the regular matrix (A + εI) and consider the limit ε → 0 . This

completes the proof. �

If an algebraically stable RK method with A nonsingular and b > 0 is strongly stable at ∞ , Li in Li [29] obtained C 1 =
(1 − δ) 

(
min 1 ≤ j≤s b j 

)‖ b T A 

−1 ‖ −2 
0 

and C 2 = δC 1 . Now since D = diag (b 1 , b 2 , . . . , b s ) and λ ≥
(
min 1 ≤ j≤s b j 

)‖ b T A 

−1 ‖ −2 
0 

, the values

of constants C 1 and C 2 computed in this paper are better than those obtained in [29] . The following example demonstrates

this conclusion. 

Example 4.1. Consider 2-stage Radau IA method 

0 1 / 4 −1 / 4 

2 / 3 1 / 4 5 / 12 −−−−−−−−−−−− −−−−−−−−−−−−−−−−−−
1 / 4 3 / 4 

. (4.6) 
8 
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Firstly, we have δ = 0 (see also [29] ). It is also easy to obtain [ u 1 , . . . , u s ] = b T A 

−1 = [ − 1 
2 , 

3 
2 ] . Then when we take D =

diag (1 / 4 , 3 / 4) , we get λ = 1 / 4 and therefor C 1 = 1 / 4 and C 2 = 0 . Since it is well-known that 2-stage Radau IA method

(4.6) is algebraically stable with D = diag (1 / 4 , 3 / 4) , the computed values C 1 = 1 / 4 and C 2 = 0 improve the previous results

obtained in Li [29] with C 1 = 1 / 10 and C 2 = 0 . 

5. A further analysis to the algebraically stable RK methods 

Comparing condition (1.5) and (1.9) , we find that there exists a gap between them when p > 1 . In this section, we further

consider algebraically stable RK methods, where we will take use of the correlative approach in Li [29] and the previous idea

that relaxing condition (1.9) by a smaller value of constant p. To do this, we make the following assumption: 

A 1 . There exist constants C 1 > C 2 ≥ 0 and � ≥ 0 , and nonnegative functions ϕ 1 (h ) , ϕ 2 (h ) , and ϕ 3 (h ) ≤ �, such that 


 e 〈 Y (n ) , BY (n ) 〉 ≥ [ C 1 + ϕ 2 (h n +1 )] ϕ 1 (h n +1 ) ‖ y n +1 ‖ 

2 − [ C 2 + ϕ 2 (h n +1 )] ϕ 1 (h n +1 ) ‖ y n ‖ 

2 

−
[

(ϕ 1 (h n +1 ) − 1) β

−α

]
max 

ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 − ϕ 3 (h n +1 ) . (5.1) 

where the constants C 1 , C 2 , � depend only on the method, the functions ϕ 1 (h ) , ϕ 2 (h ) , and ϕ 3 (h ) depend only on α, β, γ ,

and the method. 

Then we have the following theorem. 

Theorem 5.1. Let problem (1.1) satisfy conditions (1.2) –(1.4) . Assume that the method (A, b T , c, πh ) for (1.1) is algebraically stable

and satisfies the assumption A 1 , the interpolation operator πh satisfies condition (2.2) . Then, for any variable stepsize, the method

(A, b T , c, πh ) is dissipative whenever α + pβ < 0 with 

p = 

c 2 π
C 1 − C 2 

. 

Proof. Similar to Theorem 3.1 , from the algebraical stability of the method, the conditions (1.2) - (1.4) and (5.1) , we have 

‖ y n +1 ‖ 

2 ≤ ‖ y n ‖ 

2 + 2 αh n +1 [ C 1 + ϕ 2 (h n +1 )] ϕ 1 (h n +1 ) ‖ y n +1 ‖ 

2 

−2 αh n +1 [ C 2 + ϕ 2 (h n +1 )] ϕ 1 (h n +1 ) ‖ y n ‖ 

2 

−2 αh n +1 

[
(ϕ 1 (h n +1 ) − 1) β

−α

]
max 

ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 

−2 αh n +1 ϕ 3 (h n +1 ) + 2 h n +1 γ + 2 βh n +1 max 
ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 

≤ 2 αh n +1 [ C 1 + ϕ 2 (h n +1 )] ϕ 1 (h n +1 ) ‖ y n +1 ‖ 

2 

+ { 1 − 2 αh n +1 [ C 2 + ϕ 2 (h n +1 )] ϕ 1 (h n +1 ) } ‖ y n ‖ 

2 

+2 h n +1 ϕ 1 (h n +1 ) β max 
ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 + 2(γ − α�) h n +1 , (5.2) 

which implies that 

‖ y n +1 ‖ 

2 ≤
{
σ (h n +1 ) max ˆ n ≤i ≤n ‖ y i ‖ 

2 + r 1 (h n +1 ) , f or η( ̂ t n ) ≥ 0 , 

σ (h n +1 ) max 
{

max 1 ≤i ≤n ‖ y i ‖ 

2 , φ̄2 
}

+ r 1 (h n +1 ) , f or η( ̂ t n ) < 0 , 
(5.3) 

where 

σ (h ) = 

1 − ν1 h 

1 − ν2 h 

, r 1 ( h ) = 

2 h ( γ − α�) 

1 − 2 h [ α(C 1 + ϕ 2 (h ) + 1] ϕ 1 (h ) 
, 

ν1 = 2[ α(C 2 + ϕ 2 (h )) − c 2 πβ] ϕ 1 (h ) , ν2 = 2 α[ C 1 + ϕ 2 (h )] ϕ 1 (h ) 

Note that ˆ t n and ˆ n have been defined in Lemma 3.1 . It is easy to verify that 0 < σ (h ) < 1 and σ (h ) is a strictly monotone

decreasing function. The remaining part of this proof is analogous with that of Theorem 3.1 and we omit it here. �

As an application of the above theorem, we present the following example. 

Example 5.1. Consider 2-stage algebraically stable Lobatto IIIC method 

0 1 / 2 −1 / 2 

1 1 / 2 1 / 2 −−−−−−−−−−−− −−−−−−−−−−−−−−−−−−
1 / 2 1 / 2 

, (5.4) 

which is analyzed as a example in Wen et al. [63] . First we have 

‖ Y (n ) ‖ 

2 = ‖ y n +1 − h n +1 f (t n +1 , y n +1 , y 
h (·)) ‖ 

2 + ‖ y n +1 ‖ 

2 

= 2 ‖ y n +1 ‖ 

2 + h 

2 
n +1 ‖ f (t n +1 , y n +1 , y 

h (·)) ‖ 

2 
9 



W. Wang and C. Zhang Commun Nonlinear Sci Numer Simulat 97 (2021) 105723 

 

 

 

 

 

 

 

 

−2 h n +1 
 e 
〈
y n +1 , f (t n +1 , y n +1 , y 

h (·)) 
〉

≥ 2 ‖ y n +1 ‖ 

2 − 2 h n +1 
 e 
〈
y n +1 , f (t n +1 , y n +1 , y 

h (·)) 
〉
. 

From condition (1.2) , one gets 


 e 
〈
y n +1 , f (t n +1 , y n +1 , y 

h (·)) 
〉
≤ γ + α‖ y n +1 ‖ + β max 

ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 . 

Combining the above two inequality to obtain 


 e 
〈
Y (n ) , BY (n ) 

〉
= 

1 

2 

‖ Y (n ) ‖ 

2 

≥ ‖ y n +1 ‖ 

2 − h n +1 

(
γ + α‖ y n +1 ‖ + β max 

ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 

)
= (1 − αh n +1 ) ‖ y n +1 ‖ 

2 − h n +1 γ − h n +1 β max 
ˆ t n ≤t≤t n +1 

‖ y h (t) ‖ 

2 . 

Then (5.1) holds with 

C 1 = 1 , C 2 = 0 , ϕ 1 (h ) = 1 − αh, ϕ 2 (h ) = 0 , ϕ 3 (h ) = γ h. 

Consequently, for any variable stepsize, the 2-stage Lobatto IIIC method (5.4) with linear interpolation is dissipative under 

the same dissipative condition as the underlying system. 

6. Applications to the Nicholson’s blowflies models 

The objective from now on is to show that the previous theory can be applied to several situations coming from appli-

cations. We report on numerical experiments where some concrete examples are considered. 

6.1. Nicholson’s blowflies equation with variable delay 

We are first interested in considering a situation which takes into account the possible appearance of variable delay 

y ′ (t) = −ay (t) + b(t) | y (λt − τ ) | k e −ξ (t) y (λt−τ ) , t ≥ 0 , (6.1) 

where a > 0 , 0 < k ≤ 1 , 0 < λ ≤ 1 , τ ≥ 0 , b(t) > 0 , ξ (t) ≥ 0 are continuous and b(t) ≤ β1 , for any t ≥ 0 . The Nicholson’s

model of blowflies [16] is a particular case of (6.1) with k = 1 and λ = 1 . Note that when k = 0 , this equation reduces to 

y ′ (t) = −ay (t) + b(t) e −ξ (t) y (λt−τ ) , t ≥ 0 , (6.2) 

which is Lasota and Wazewska model of production of blood cells [26] for λ = 1 . These models with a constant delay have

been studied in Caraballo et al. [6] . Both the results obtained in Caraballo et al. [6] and Proposition 1.1 here confirmed that

the system (6.2) is dissipative for any a > 0 . For the system (6.1) , it can be obtained from [6] that the dissipativity condition

is β1 < 

√ 

λ
e a for k = 1 and ek < a 2 for 0 < k < 1 . However, from Proposition 1.1 we can verify that the dissipativity condition

is {
β1 < a, if k = 1 ;
k < a, if 0 ≤ k < 1 , 

(6.3) 

under which the system (6.1) is dissipative. To obtain this condition, we first need to note that the solution y (t) of (6.1) sat-

isfies y (t) ≥ 0 for any t ≥ −τ . Then when k = 1 we have 


 e 〈−ay (t) + b(t) | y (λt − τ ) | e −ξ (t) y (λt−τ ) , y (t) 〉 ≤ −a | y (t) | 2 + β1 | y (λt − τ ) || y (t) | 
≤
(

−a + 

β1 

2 

)
| y (t) | 2 + 

β1 

2 

| y (λt − τ ) | 2 , (6.4) 

which implies that (1.2) holds with α = −a + 

β1 
2 and β = 

β1 
2 . Consequently, β1 < a implies the dissipativity criteria (1.5) . If

0 ≤ k < 1 , to obtain the dissipativity condition (6.3) we need the Young’s inequality 

xz ≤ x r 

r 
+ 

z s 

s 
, for x, z ≥ 0 , r, s > 1 with r −1 + s −1 = 1 . (6.5) 

Using this inequality to obtain 


 e 〈−ay (t) + b(t) | y (λt − τ ) | k e −ξ (t) y (λt−τ ) , y (t) 〉 
≤ −a | y (t) | 2 + β1 | y (λt − τ ) | k | y (t) | 
≤ −a | y (t) | 2 + 

(
(1 − k ) β

1 
1 −k 

1 
+ k | y (λt − τ ) | 

)
| y ( t) | , 
10 
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Fig. 6.1. Numerical solutions to (6.1), (6.7) with k = 1 computed by ODEs numerical methods with linear interpolation. Left: one-leg θ-method ( θ = 0 . 51 ), 

2-stage Lobatto IIIC and 2-stage Radau IA with h = 0 . 002 ; Right: 2-stage Lobatto IIIC and 2-stage Radau IA with h = 0 . 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ (1 − k ) 2 

4 ε
β

2 
1 −k 

1 
+ 

(
−a + ε + 

k 

2 

)
| y (t) | 2 + 

k 

2 

| y (λt − τ ) | 2 , ∀ ε > 0 , (6.6) 

which implies that (1.2) holds with γ = 

(1 −k ) 2 

4 ε β
2 

1 −k 

1 
, α = −a + ε + 

k 
2 and β = 

k 
2 . Then the condition k < a implies that the

dissipativity criteria (1.5) holds. 

Now consider the numerical solution to equation (6.1) subject to the initial condition 

y (t) = e t sin (t) + 1 , t ≤ 0 . (6.7) 

The parameters a, k, and the functions b(t) , ξ (t) , are chosen such that the system is dissipative. We choose a = 100 ,

b(t) = 10 e cos (t) , ξ (t) = t, λ = 1 / 2 , τ = 1 . 

Example 6.1. Let us consider the case of k = 1 . In this case, we have α = −100 + 5 e and β = 5 e and therefore the system

is dissipative. In fact, from Proposition 1.1 we further know that in view of γ = 0 the system is asymptotic to a fixed point

y = 0 . 

We now apply three ODEs numerical methods, the one-leg θ-method ( θ = 0 . 51 ), the 2-stage Lobatto IIIC method and the

2-stage Radau IA method, with linear interpolation to problem (6.1) and (6.7) . 

Using θ = 0 . 51 , it is easy to verify α + 

1 
(2 θ−1) 2 

β > 0 . Then the result obtained in Wen et al. [63] can not be applied

to this case. For it our result will come in handy. It follows from Example 3.1 that one-leg θ-method with θ = 0 . 51 will

preserve the dissipativity of the underlying system (6.1) if the stepsizes satisfy the following constraint condition: 

0 . 0 0 04707765 ≤ h n < 0 . 0026727252 , ∀ n ≥ 1 . (6.8) 

Therefore, we first apply the one-leg θ-method ( θ = 0 . 51 ) with linear interpolation to solve the problem (6.1) , where the

stepsize h = 0 . 002 . The numerical results are displayed in Fig 6.1. 

Since the 2-stage Lobatto IIIC method with linear interpolation can preserve the dissipativity of the underlying system for 

any stepsize, this method with stepsize h = 0 . 002 and h = 0 . 2 is also used to solve the problem (6.1), (6.7) . The numerical

results are also displayed in Fig. 6.1 . 

For the 2-stage Radau IA method, it is not hard to known from Example 4.1 that this method with linear interpolation

can preserve the dissipativity of the underlying system, since α + 4 β = −100 + 25 e < 0 . Notice that we can not reach any

conclusion for this case from the previous results in the literatures. The numerical results confirm our theoretical analysis. 

6.2. Nicholson’s blowflies equation with distributed delay 

The next example is about the integro-differential Nicholson’s model (see the review paper [4] ) 

y ′ (t) = −ay (t) + b(t) 

∫ 0 

−τ (t) 
| y (t + s ) | k e −ξ (t+ s ) y (t+ s ) ds, t ≥ 0 , (6.9) 

where a > 0 , 0 < k ≤ 1 , τ (t) ≥ 0 , b(t) > 0 , ξ (t) ≥ 0 are continuous and τ (t) ≤ τ, b(t) ≤ β1 , for any t ≥ 0 . This model with

a constant delay has been studied in Caraballo et al. [6] . The arguments in the above subsection can be used to derive the

dissipativity condition for this model. The dissipativity condition is the same as (6.3) except β being replaced by β τ . 
1 1 

11 
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Now we consider the numerical solution. We still apply the one-leg θ-methods, 2-stage Lobatto IIIC method and 2-stage 

Radau IA method to problem (6.9) subject to the initial condition (6.7) . 

When the one-leg θ-method with θ = 0 . 51 is applied to solve (6.9) , we have 

y n +1 = y n + h 

[
−ay θn + b(t θn ) 

∫ 0 

−τ (t θn ) 
| y (t θn + s ) | k e −ξ (t θn + s ) y (t θn + s ) ds 

]
(6.10) 

where y θn = θy n +1 + (1 − θ ) y n and t θn = θt n +1 + (1 − θ ) t n . Let m n = � (t θn − τ (t θn )) /h � , where � x � is the greatest integer less

or equal to x . Then if the linear interpolation is used in this method, the integral on the right hand side of the equation

(6.10) can be approximated by the following formula, where g(t, y ) = | y | k e −ξ (t) y and ζ (t) = t − τ (t) , ∫ 0 

−τ (t θn ) 
g(t θn + s, y (t θn + s )) ds ≈ 1 

2 

g 
(
ζ (t θn ) , (ζ (t θn ) − t m n 

) y m n +1 + (t m n +1 − ζ (t θn )) y m n 

)
(t m n +1 − ζ (t θn )) 

+ 

1 

2 

[
h + (t m n +1 − ζ (t θn )) 

]
g ( t m n +1 , y m n +1 ) + h 

n −1 ∑ 

i = m n +2 

g(t i , y i ) 

+ 

1 

2 

(1 + θ ) hg(t n , y n ) + 

1 

2 

θhg(t θn , y 
θ
n ) . (6.11) 

For solving the obtained nonlinear algebraic equations, we use Newton iterative method. 

Now applying 2-stage Lobatto IIIC method with the linear interpolation and 2-stage Radau IA method with the linear 

interpolation to (6.9) yields the corresponding nonlinear algebraic systems. For solving the nonlinear equations, we consider 

the following iteration scheme where on iteration N we have 

Y (n, N ) 
i 

= y n + h n +1 

s ∑ 

j=1 

a i j 

[
−aY (n, N ) 

j 
+ b(t n, j ) G 

(n, N−1) 
j 

]
, i = 1 , . . . , s, 

y (N ) 
n +1 

= y n + h n +1 

s ∑ 

j=1 

b j 
[
−aY (n, N ) 

j 
+ b(t n, j ) G 

(n, N−1) 
j 

]
, (6.12) 

with the initial guess y (0) 
n +1 

= y n . Here, G 

(n, N−1) 
j 

is defined by the following 

G 

(n, N−1) 
j 

= 

1 

2 

g 

(
ζ (t n, j ) , (ζ (t n, j ) − t 

m 

j 
n 
) y 

m 

j 
n +1 

+ (t 
m 

j 
n +1 

− ζ (t n, j )) y m 

j 
n 

)
(t 

m 

j 
n +1 

− ζ (t n, j )) 

+ 

1 

2 

[ 
h + (t 

m 

j 
n +1 

− ζ (t n, j )) 
] 

g 

(
t 

m 

j 
n +1 

, y 
m 

j 
n +1 

)
+ h 

n −1 ∑ 

i = m 

j 
n +2 

g(t i , y i ) 

+ 

1 

2 

(1 + c j (1 − c j )) hg(t n , y n ) + 

1 

2 

c 2 j hg(t n +1 , y 
(N−1) 
n +1 

) . (6.13) 

where m 

j 
n = � (t n, j − τ (t n, j )) /h � . Following the approach designed by Enright and Hu [10] for continuous RKMs, we can easily

prove that the iteration (6.12) is convergent for sufficiently small h (see also [54] ). 

Example 6.2. Let a = 100 , b(t) = 10 e cos (t) , τ (t) = 

1 
3 ( sin (t) + 2) , ξ (t) = | t| . In this case, we have α = −100 + 5 e and

β = 5 e when k = 1 . Following the approach used in Subsection 6.1, we know that the θ-method ( θ = 0 . 51 ) with linear

interpolation will preserve the dissipativity of the underlying system (6.9) if the stepsizes satisfy the constraint condition 

(6.8) , the 2-stage Lobatto IIIC method with linear interpolation and the 2-stage Radau IA method with linear interpolation 

can preserve the dissipativity of the underlying system for any stepsize. The numerical solutions to the equation (6.9) with

the initial condition (6.7) obtained by the three numerical methods with different stepsizes are displayed in Fig. 6.2 . Observe

that when h = 0 . 002 , the three numerical methods can really simulate the behavior of the solution to (6.9), (6.7) . However,

when h = 0 . 1 , the θ-method ( θ = 0 . 51 ) with linear interpolation can be seen to give temporal oscillations and negative val-

ues near the points t = 0 . In fact, this motivate us to consider the positivity properties of numerical methods which will be

our future work. 

Example 6.3. Now consider the case 0 < k < 1 . Let k = 0 . 5 , a = 100 , b(t) = 10 e cos (t) , τ (t) = 

1 
3 ( sin (t) + 2) , ξ (t) = | t| . Then

α = −100 + ε + 0 . 25 for any ε > 0 and β = 0 . 25 . The 2-stage Lobatto IIIC method with linear interpolation and the 2-stage

Radau IA method with linear interpolation are dissipative for any stepsize. For the θ-method with θ = 0 . 51 , the dissipativity

is guaranteed if the stepsize is restricted so that 

0 . 0 0 040116 ≤ h n < 0 . 19038553 , ∀ n ≥ 1 . (6.14) 

holds. The numerical results are presented in Fig. 6.3 . 

To illustrate the convergence of these methods, in this example, we also compute the errors. We let the numerical solu-

tions obtained by these numerical methods with h = 0 . 002 be the reference solutions. The errors at t = 100 and the orders

of convergence are presented in Table 6.1 . Observe that the θ-method ( θ = 0 . 51 ) with linear interpolation has convergence

of order 1 and the other two methods with linear interpolation have convergence of order 2. A point which is especially
12 
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Fig. 6.2. Numerical solutions to (6.9), (6.7) with k = 1 computed by one-leg θ-method ( θ = 0 . 51 ), 2-stage Lobatto IIIC and 2-stage Radau IA with stepsizes 

h = 0 . 002 and h = 0 . 1 . 

Table 6.1 

The numerical solutions and the errors produced by the θ-method ( θ = 0 . 51 ), the 

2-stage Lobatto IIIC method and the 2-stage Radau IA method with linear interpo- 

lation applied to (6.9), (6.7) with k = 0 . 5 , and the orders of these methods, where 

the numerical solutions obtained by these numerical methods with h = 0 . 002 are 

the reference solutions. 

Methods h Numerical solutions Errors Orders 

0.1 5 . 360983 × 10 −3 6 . 05434 × 10 −4 –

θ -method 0.05 5 . 061867 × 10 −3 3 . 06318 × 10 −4 0.982940 

(θ = 0 . 51) 0.025 4 . 904889 × 10 −3 1 . 49340 × 10 −4 1.03643 

0.1 4 . 740461 × 10 −3 1 . 869 × 10 −6 –

2-stage 0.05 4 . 742121 × 10 −3 0 . 209 × 10 −6 3.160692 

Lobatto IIIC 0.025 4 . 742365 × 10 −3 0 . 035 × 10 −6 2.578076 

0.1 4 . 734412 × 10 −3 7 . 914 × 10 −6 –

2-stage 0.05 4 . 740661 × 10 −3 1 . 665 × 10 −6 2.248885 

Radau IA 0.025 4 . 741973 × 10 −3 0 . 353 × 10 −6 2.237782 
to be noted in connection with these numerical results is that the 2-stage Lobatto IIIC method with linear interpolation ex- 

hibits higher accuracy and higher convergence order than the 2-stage Radau IA method with linear interpolation, although 

the 2-stage Lobatto IIIC method has convergence of order 2 and the 2-stage Radau IA method has convergence of order 

3 when they are applied to ODEs. We think that this arises mainly because the 2-stage Lobatto IIIC method with linear 

interpolation has better long-time stability property than the 2-stage Radau IA method with linear interpolation. 

6.3. Diffusive Nicholson’s blowflies equation with multiple delays 

In this subsection we will consider the diffusive Nicholson’s blowflies equation with multiple delays 

∂u (x, t) 

∂t 
= ν

∂ 2 u (x, t) 

∂x 2 
− au (x, t) + 

k ∑ 

i =1 

b i (t) u (x, t − τi ) e 
−ξu (x,t−τi ) , 

t ≥ 0 , x ∈ (0 , 1) , (6.15) 
13 
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Fig. 6.3. Numerical solutions to (6.9) , (6.7) with k = 0 . 5 computed by one-leg θ-method ( θ = 0 . 51 ), 2-stage Lobatto IIIC and 2-stage Radau IA with stepsizes 

h = 0 . 002 and h = 0 . 1 . 

 

 

 

 

 

 

subject to 

u (0 , t) = u (1 , t) = 0 , t ≥ 0 , (6.16) 

u (x, t) = φ(x, t) , t ∈ [ −τ, 0] , x ∈ [0 , 1] , (6.17) 

where ν > 0 , a > 0 , τi ≥ 0 (i = 1 , . . . , k ) , ξ ≥ 0 , τ = max 1 ≤i ≤k { τi } , b i (t) > 0 (i = 1 , . . . , k ) are continuous and b i (t) ≤ βi , for

any t ≥ 0 . This equation has been widely discussed in recent years (see, for example, [32,33,39,42,43] ). Using the boundary

condition (6.16) , we can verify the condition (1.2) with γ = 0 , α = −νπ2 − a + 

∑ k 
i =1 βi / 2 and β = 

∑ k 
i =1 βi / 2 . Then in view

of Proposition 1.1 , the following condition implies that the system (6.15) and (6.16) is dissipative 

−νπ2 − a + 

k ∑ 

i =1 

βi < 0 . (6.18) 

We observe that γ = 0 which implies that the solution is asymptotically stable, i.e. lim t→∞ 

‖ u (x, t) ‖ L 2 = 0 , under the con-

dition (6.18) . After application of the numerical method of lines, we obtain the following delay differential equations of the

form 

U 

′ 
i (t) = �x −2 [ U i −1 (t) − 2 U i (t) + U i +1 (t)] − aU i (t) + 

k ∑ 

j=1 

b j (t) U i (t − τ j ) e 
−ξU i (t−τ j ) , t ≥ 0 , (6.19) 

U 0 (t) = U M 

(t) = 0 , t ≥ 0 , (6.20) 

U i (t) = φ(x i , t) , i = 0 , 1 , . . . , M, t ∈ [ −τ, 0] (6.21) 

where M = 1 / �x, x i = i �x and U i (t) is meant to approximate the solution of (6.15) at the point (t, x i ) . We take M = 800 for

the numerical method of lines. 
14 
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Fig. 6.4. Numerical results of the θ-method ( θ = 0 . 51 ) connecting the method of lines with the stepsizes h = 0 . 04 and h = 0 . 02 when applied to problem 

(6.15) –(6.17) subject to four different initial conditions (6.22) –(6.25) , where Nh = 20 . Left: h = 0 . 04 ; Right: h = 0 . 02 . 

 

 

 

 

 

 

 

The purpose of this numerical example is to affirm that (2.10) holds for any bounded initial functions, that is, the system

possesses a bounded absorbing set. For this purpose, we give the following four initial functions 

φ(x, t) = e t x (1 − x ) , t ∈ [ −τ, 0] , x ∈ [0 , 1] ; (6.22) 

φ(x, t) = e −t x (1 − x ) , t ∈ [ −τ, 0] , x ∈ [0 , 1] ; (6.23) 

φ(x, t) = e t sin (πx ) , t ∈ [ −τ, 0] , x ∈ [0 , 1] ; (6.24) 

φ(x, t) = e −t sin (πx ) , t ∈ [ −τ, 0] , x ∈ [0 , 1] . (6.25) 

From the previous two experiments, observe that the numerical solutions produced by the θ-method ( θ = 0 . 51 ) are dis-

sipative and convergent when the stepsizes satisfy the condition (3.26) given in this paper as well as 2-stage Lobatto IIIC

method and 2-stage Radau IA method. So, for simplicity, in following examples we consider only using the θ-method with 

θ = 0 . 51 to compute the approximation solutions. 

Example 6.4. Let ν = 1 , a = 0 . 5 , ξ = 1 , k = 2 , b 1 (t) = 0 . 5 , b 2 (t) = 1 . 5 , τ1 = 1 , and τ2 = 2 . Then the condition (6.18) holds

and hence the solution is asymptotically stable, i.e. lim t→∞ 

‖ u (x, t) ‖ L 2 = 0 . Now consider the discrete norm 

‖ U 

n ‖ 

2 = �x 

M−1 ∑ 

i =1 

(
U 

n 
i 

)2 
, n ≥ −2 /h, (6.26) 

where v n 
i 

denotes the numerical solution which is produced by θ-method ( θ = 0 . 51 ) approximating u (x i , t n ) with t n = nh .

According to our analysis, we have came to the conclusion that 

lim 

n →∞ 

‖ U 

n ‖ = 0 

if the stepsize h satisfies 0 . 004276 < h < 0 . 04015 . The numerical results of the θ-method ( θ = 0 . 51 ) connecting the method

of lines with the stepsizes h = 0 . 04 and h = 0 . 02 when applied to problem (6.15) –(6.17) subject to four different initial

conditions (6.22) –(6.25) are shown in Fig. 6.4 . 

Example 6.5. It should be pointed out that if the boundary condition (6.16) is changed into the following condition 

u (0 , t) = u (1 , t) = u 

∗, t ≥ 0 , (6.27) 

where u ∗ is a constant, we need to use the change of variables v = u − u ∗. The function v will satisfy 

∂v (x, t) 

∂t 
= ν

∂ 2 v (x, t) 

∂x 2 
− a (v (x, t) + u 

∗) + 

k ∑ 

i =1 

b i (t)(u 

∗ + v (x, t − τi )) e 
−ξ (u ∗+ v (x,t−τi )) , 

t ≥ 0 , x ∈ (0 , 1) , (6.28) 
15 
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Fig. 6.5. Numerical results of the θ-method ( θ = 0 . 51 ) connecting the method of lines with the stepsizes h = 0 . 04 and h = 0 . 02 when applied to problem 

(6.15) subject to the boundary condition (6.27) and the initial condition u (x, t) = φ(x, t) + u ∗, x ∈ [0 , 1] , t ∈ [ −2 , 0] , where Nh = 20 . Left: h = 0 . 04 ; Right: 

h = 0 . 02 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the boundary condition (6.16) . Then the condition (1.2) can be verified with γ = ( a 
4 ε1 

+ 

∑ k 
i =1 βi 
4 ε2 

) u ∗2 , α = −νπ2 − a +
ε1 + ε2 + 

∑ k 
i =1 βi / 2 and β = 

∑ k 
i =1 βi / 2 for any ε1 > 0 and ε2 > 0 . Let the involved parameters be the same values as in

Example 6.5 . We still use the θ-method ( θ = 0 . 51 ) connecting the method of lines to solve the problem (6.28) with the

boundary condition (6.16) , and the initial condition (6.17) where φ is given by (6.22) or (6.23) or (6.24) or (6.25) . The

numerical solutions U 

n 
i 

approximating to the solutions of the original problem (6.15) subject to the boundary condition 

(6.27) and the initial condition u (x, t) = φ(x, t) + u ∗, x ∈ [0 , 1] , t ∈ [ −2 , 0] are shown in Fig. 6.5 , where u ∗ = 2 ln 2 . Observe

that lim n →∞ 

‖ U 

n ‖ = u ∗. 

7. Concluding remarks 

In this paper, we have presented some new dissipative results for the variable-stepsize RK methods applied to VFDEs. It 

well known that an efficient numerical method should be of variable-stepsize. To the best of our knowledge, however, the 

existing numerical dissipative results for VFDEs are all for the case of fixed-stepsize. Accordingly, the derived methods in 

this paper and their dissipative results gave a large improvement to the existing results. 

To weaken the condition α + pβ < 0 , we considered two approaches. One is based on Theorem 4.1 by which we can

compute the values of C 1 and C 2 more accurately, and therefor p. The other is based on the condition (5.1) which has been

considered in Li [29] . By use of this result, we prove that the 2-stage Lobbatto IIIC method with piecewise linear interpo-

lation has p = 1 , that is, it is dissipative for any variable stepsize under the same dissipative condition as the underlying

system. 

When α + pβ > 0 , no previous results can be applied. In this paper, for this case, we considered the conditional dissipa-

tivity which implies the method can preserve exactly the dissipativity of the underlying system under a stepsize restriction 

and showed the conditional dissipativity of some (k, l) −algebraically stable RK methods. 

Our findings extend and improve earlier results reported in Wen et al. [63] . Specializing our results to the DDEs y ′ (t) =
f (t, y (t) , y (t − τ )) , we find our results to be slightly weaker than those in Huang [20] , Wen et al. [61] . As a conclusion, we

would like to point out the precise differences. 

(1) For DDEs with a constant delay, the special case of VFDEs (1.1) , the author in Huang [20] studied the dissipativity of

(k, l) -algebraically stable RK method with linear interpolation in a Hilbert space and obtained the sufficient condi- 

tions: k < 1 and (α + β) h < l. Especially, a sufficient condition for a consistent, DJ-irreducible, algebraically stable RK

method with linear interpolation which can preserve the dissipatvity of the underlying system is | R (∞ ) | < 1 . 

(2) For DIDEs with a constant delay, Gan [12] studied the dissipativity of θ-methods. Wen et al. [61] studied the dissipa-

tivity of RK methods for NDIDEs with a constant delay in a finite-dimensional space. As a corollary of their results,

it is revealed that a consistent, b j > 0 , j = 1 , 2 , . . . , s, algebraically stable RK method with linear interpolation can

preserve the dissipatvity of the underlying system. 

These strong property could be derived thanks to the relatively simple structure of the problem, a constant delay 

problem. The approach cannot be generalized to more complex problems, for example, a general variable delay prob- 

lem. 
16 
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Table 7.1 

Dissipativity results of RKMs for VFDEs satisfying α + β < 0 obtained in the present paper with comparison to those obtained in Wen et al. [63] , where 

q = l + 

1 −k 
2(C 1 −C 2 ) 

. 

Methods Assumptions Present results (variable stepsize h n ) Results in Wen et al. [63] (constant stepsize h ) 

(k, l) -algebraically stable RKMs α + pβ < 0 αh n ≤ l, (α + pβ) h n < q (α + pβ) h < 2 l

satisfying (3.1) , p = 

dc 2 π
C 1 −C 2 

α + pβ ≥ 0 l 
α ≤ h n < 

q 
α+ pβ no results 

(k, l) -algebraically stable RKMs C 1 = 

1 −δ∑ s 
j=1 d 

−1 
j 

u 2 
j 

, C 1 = 

(1 −δ) ( min 1 ≤ j≤s b j ) 
‖ b T A −1 ‖ 2 

0 

satisfying (3.1) , C 2 = δC 1 C 2 = δC 1 

δ = | R (∞ ) | < 1 , p = 

dc 2 π
C 1 −C 2 

[ u 1 , . . . , u s ] = 

lim ε→ 0 b 
T (A + εI) −1 

Algebraically stable RKMs α + pβ < 0 ∀ h n > 0 ∀ h > 0 

satisfying (3.1) , p = 

c 2 π
C 1 −C 2 

α + pβ ≥ 0 l 
α ≤ h n < 

q 
α+ pβ no results 

Algebraically stable RKMs α + pβ < 0 ∀ h n > 0 no results 

satisfying (5.1) , p = 

c 2 π
C 1 −C 2 

 

 

 

 

 

 

 

 

 

 

 

(3) For DDE with a proportional delay, Gan [13] studied the dissipativity of implicit Euler method by transforming this 

equation into a constant delay differential equation. So far we have not seen in literature other numerical dissipativity 

results for nonlinear proportional delay differential equations. 

(4) In [63] , the authors also investigated the dissipativity of RK methods for the general VFDEs in a Hilbert space. To com-

pare our results with their results clearly, we summarize the dissipativity results of RK methods for VFDEs obtained 

in this paper and in Wen et al. [63] and list them in Table 7.1 . 

We note that the convergence of RK methods (2.1) for VFDEs has been reported in Li [27] and Li and Li [31] . From

[27] and [31] , we know that under some conditions, the errors of B -consistent RK methods (2.1) of order q with piecewise

Lagrangian interpolation of degree not less than q − 1 can be estimated by 

‖ y n − y (t n ) ‖ ≤ C 0 (t n ) max 
−τ≤t≤0 

‖ ψ(t) − φ(t) ‖ + C(t n ) 
(

max 
0 ≤i ≤n −1 

h i 

)q 

, (7.1) 

where ψ is an initial approximation to φ(t) . We also note that the error bounds of general linear methods (GLMs) for VFDEs

have been derived in Li [28] . The dissipativity of GLMs for VFDEs is still open, although the dissipativity of one-leg methods,

linear multistep methods and multistep Runge-Kutta methods, which are special cases of GLMs, for special FDEs has been 

investigated (see, e.g., [21,34,37,46] ). Studying the dissipativity of GLMs for VFDEs will be our future work. 

It should be pointed out that another class of extending RK methods, the functional continuous RK (FCRK) methods, was 

introduced in Maset et al. [35] (see, also, the survey [3] ). Recently, the global errors of FCRK methods are analyzed in Maset

and Zennaro [36] and have similar behavior with (7.1) . However, the dissipativity of FCRK for VFDEs (1.1) is still open and

will be a focus of our future reserch. 

In this paper, we have applied our theoretical results to nonlinear Nicholson blowflies, including variable delay model, 

integro-differential Nicholson’s model, and diffusive model with multiple delays, and implemented various numerical exper- 

iments for RK methods for these models. For all these models these experiments exactly verify the theoretical results. It is

noteworthy that the results obtained in this paper can be easily applied to other VFDEs mathematical models in science and

physics. 
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