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Recently, two-pass end-to-end (E2E) automatic speech recognition (ASR) systems with the conformer model 
followed by a spelling correction backend have demonstrated remarkable progress and exceptional performance 
in general speech recognition tasks. However, these models may fail when they come to code-switching (CS) 
speech, where a speaker alternates words of two or more languages within a single sentence or across sentences. 
In this study, we propose a novel tri-stage training two-pass (TripleT) E2E framework to improve the CS ASR 
performance by leveraging the individual attributes of each monolingual language. Our framework starts by 
introducing two symmetric language-specific encoders that are pre-trained using a large monolingual corpus. 
This improves the high-level acoustic representation of each individual language. Then, a bilingual acoustic 
learner (BAL) is proposed to combine these language-specific representations and transfer the monolingual 
acoustic attributes to code-switching properties. Next, these acoustic representations are further utilized to boost 
the spelling corrector by a context plus acoustic learner with the same structure as BAL. Finally, the whole 
proposed framework is fine-tuned using the CS corpus to achieve the final CS E2E ASR system. Our experiments 
are performed on a mixed training dataset consisting of 1000 hours of Mandarin data, 960 hours of English data, 
and 555.9 hours of Mandarin-English code-switching data. The ASR performances are evaluated on a 23.6 hours 
CS test set, and results show that our proposed TripleT-E2E framework achieves a 13.4% relative reduction in 
token error rate compared to a competitive two-pass E2E baseline model.
1. Introduction

In recent years, end-to-end (E2E) automatic speech recognition 
(ASR) models have gained increasing research attention because of 
their excellent performance and unified neural network architectures 
[1–3]. These E2E models have been widely used in a variety of large-

scale monolingual [4–6] and multilingual ASR tasks [7,8]. However, it 
should be noted that ASR performance is significantly degraded when 
presented with bilingual mixing speech, also known as code-switching 
(CS) speech. CS refers to the phenomenon of mixing words or phrases 
from distinct languages by a speaker and it is common in multilingual 
communities such as Cantonese-English [9], Mandarin-English [10], 
Frisian-Dutch [11] and Spanish-English [12]. With the increasing fre-
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quency of international exchanges, code-switching has become more 
prevalent, leading to broad research interests in CS ASR in recent speech 
recognition studies [13–15].

Many recent progresses have been achieved in end-to-end automatic 
speech recognition [16,17], one of the focuses of these recent works 
is improving the ASR system performance by adding an additional 
spelling correction backend module [15] after an E2E ASR decoder in 
a two-pass manner. Although these models have shown excellent per-

formance in various monolingual speech recognition tasks, building a 
code-switching ASR system presents a greater challenge. This challenge 
arises from both the inherent nature of code-switching speech, which 
involves the mixing of languages, and the severe data sparsity issue 
specific to code-switching events in both speech and text. Even if the 
Available online 25 January 2024
0003-682X/© 2024 Elsevier Ltd. All rights reserved.

1 This work was done during internship at Xiaohongshu Inc.

https://doi.org/10.1016/j.apacoust.2024.109883

Received 19 July 2023; Received in revised form 22 December 2023; Accepted 19 J
anuary 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apacoust
mailto:xuefei_wang@163.com
mailto:zhiming@xiaohongshu.com
mailto:fenglongxie@xiaohongshu.com
mailto:yanhua@shnu.edu.cn
https://doi.org/10.1016/j.apacoust.2024.109883
https://doi.org/10.1016/j.apacoust.2024.109883
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2024.109883&domain=pdf


X. Wang, Y. Jin, F. Xie et al.

individual languages involved are well-resourced, there is a scarcity of 
available training data for code-switching. Only a limited number of 
corpora with small amounts of code-switching training data are cur-

rently available [18,19]. In contrast to the abundance of training data 
available for general monolingual ASR tasks, which often consists of 
thousands of hours of data [20,21], the largest open-resource corpus de-

signed for Mandarin-English code-switching ASR, known as the TALCS 
corpus [19], still only contains 555.9 hours of training data.

Aiming to alleviate the impact of limited code-switching training 
data, this study investigates leveraging language-specific acoustic in-

formation learned from a large amount of monolingual data to im-

prove both ASR and the corresponding spelling corrector modules in 
E2E manner for Mandarin-English code-switching speech recognition. 
Specifically, we propose a new tri-stage training two-pass (TripleT) E2E 
framework to leverage the individual monolingual language attributes 
at different training stages. Based on a conformer-based E2E spelling 
correction architecture, we first introduce two symmetric language-

specific encoders, which are well pre-trained on a large monolingual 
corpus. The purpose is to enhance the high-level acoustic representa-

tion for each language independently. Next, a bilingual acoustic learner 
(BAL) is proposed to combine these language-specific representations 
and transfer the monolingual acoustic attributes in these representa-

tions to a code-switching property. Furthermore, these acoustic repre-

sentations are leveraged to improve the spelling corrector by a context-

plus acoustic learner with the same structure as BAL. The entire pro-

posed framework is then fine-tuned using the CS corpus to achieve the 
final CS E2E ASR system. All experiments are conducted on the public 
Mandarin-English code-switching ASR corpus TALCS [19], results show 
that our proposed TripleT-E2E framework outperforms the Conformer-

based two-pass E2E baseline model significantly.

To the best of our knowledge, this is the first study to propose 
methods to utilize pre-trained language-specific encoders for improving 
two-pass end-to-end CS ASR system. The rest of this paper is orga-

nized as follows. Section 2 presents the review of previous works. In 
Section 3, we briefly describe the fundamental of the Conformer-based 
ASR architecture. In Section 4, we introduce the proposed TripleT-E2E 
framework, including the model structure and tri-stage training strat-

egy. Experimental setup and results are presented in Section 5 and 6. 
Finally, we conclude the study in Section 7.

2. Review of previous works

Code-switching, or the alternation between languages within a con-

versation, is a natural linguistic phenomenon common among bilingual 
and multilingual speakers [22]. Code-switching can be broadly cate-

gorized into inter-sentential switching between sentences and intra-

sentential switching within a sentence [23]. Notably, in real code-

switching ASR scenarios, like the TALCS dataset we used in this study, 
both inter-sentential and intra-sentential code-switching acoustic events 
are encompassed. Quantifying code-switching presents considerable dif-

ficulty, and there is a continuous effort to establish objective measures 
for its degree. Various metrics have been proposed in the literature 
to quantify the code-switching. For example, Hou et al. [24] utilized 
language entropy and the probability of switching, Bullock et al. [25]

explored the numerically dominant language overall, of all verbs, and 
a subset of system morphemes for measuring intra-sentential code-

switching mixing, while Myslín and Levy [26] introduced a normalized 
IU-position metric. Given these considerations, Code-switching speech 
introduces various challenges for developing automated ASR systems, 
including acoustic and language modeling for mixed languages, pronun-

ciation modeling, language identification from speech, etc. To handle 
these challenges, previous works mainly focus on (i) data sparsity for 
both acoustic and language modeling; (ii) the co-articulation effects be-

tween target modeling units at code-switches.

The code-switching data sparsity problem is a long-standing issue 
2

in the field of CS speech recognition, either for conventional hybrid 
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ASR systems or for end-to-end ASR models. Because in each CS utter-

ance, the speech data is normally dominated by the matrix language, 
acoustic events of code-switches are extremely sparsity in the CS train-

ing corpus. In addition, creating a large-scale code-switching speech 
recognition corpus with a golden standard manual transcription incurs 
high costs of both time and money due to the labor-intensive nature 
of manual transcription, the need for skilled annotators, and the time-

consuming process of ensuring accurate and consistent transcriptions 
across a substantial amount of data. Additionally, the complexity of 
code-switching scenarios and the diverse linguistic contexts involved 
contribute to the resource-intensive nature of this task. In recent years, 
the previous works focused on creating a CS corpus are also limited, 
such as the SEAME corpus with 30 hours of spontaneous intra-sentential 
CS speech [27], the OC16-CE80 corpus with 80 hours of training data 
provided for the Chinese-English mixlingual speech recognition chal-

lenge (MixASR CHEN) [28], the Arabic-English cs corpus with 12 hours 
[29], and the TALCS [19] with around 560 hrs training data that was 
used in our study, etc. Besides, some other researchers explored new 
CS data augmentation methods to alleviate the impact of limited code-

switches training events, and the augmentation using text-to-speech 
(TTS) system [30–32], etc. Although significant efforts have been made 
by the academic and industrial communities in creating CS datasets, the 
current available CS training data is still insufficient for building a suc-

cessful code-switching ASR system, especially for the recently proposed 
end-to-end models that normally require large amounts of training data. 
Therefore, many recent works focus on techniques to alleviate the data 
sparsity during acoustic and language modeling.

To alleviate the effect of co-articulation at code-switch points, most 
previous approaches were proposed based on the conventional hybrid 
deep neural network-hidden Markov model (DNN-HMM) ASR frame-

works. These approaches mainly focused on mix-language phone map-

ping and phone sharing, for example, (i) combining phone sets from two 
languages [33,34], (ii) mapping phone sets from two languages [35,36], 
and (iii) merging similar phone sets from two languages [37–39]. How-

ever, with the rapid progress of end-to-end acoustic modeling tech-

niques, the end-to-end ASR systems have been widely used for code-

switching ASR [40–42]. These systems simplified the building of the 
CS ASR system by directly predicting the combined graphemes or char-

acters of different languages from acoustic input. The co-articulation 
problem in the E2E ASR strategy is significantly diminished since the 
reliance on pronunciation dictionaries or lexicons is no longer required. 
However, since the E2E ASR models are very deep neural networks, the 
training data of code-switches are extremely sparse, how to leverage the 
pronunciation-related linguistic knowledge between different languages 
to assist the E2E CS ASR system will be interesting and worthwhile.

The acoustic modeling is always very important for code-switching 
ASR system building, many previous works have been explored. They 
mainly focus on how to model the acoustic characteristics of differ-

ent languages well under the condition of limited CS training data. For 
example, in [43,44], different ways of phoneme-merging between mul-

tiple languages were proposed to find effective mixed-language acoustic 
modeling target units. In [45–47], authors explored using bi-encoder 
or multi-encoder-decoder structures. They pre-trained the language-

specific encoders using monolingual data in each language. Then the 
individual language attributes are extracted and combined to obtain the 
mixture features with bilingual information. In addition, some multi-

task learning technologies also have been explored for code-switching 
ASR. Authors of [48] trained a CTC-Attention model [49] for speech 
recognition and used a frame-level language identification model to 
adjust the posteriors. In [50], they proposed a language-related atten-

tion mechanism to reduce confusion in multilingual contexts for the 
E2E code-switching ASR model. Many other related works, such as the 
recently proposed language-specific acoustic boundary learning [42], 
token-level language diarization [51], the internal language model es-

timation for E2E CS ASR [52], etc. All these previous works have been 

greatly boosted the performance of code-switching speech recognition, 
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Fig. 1. The architecture of the basic Conformer model.
however, most of them are based on the popular end-to-end ASR model 
(e.g. attention based Transformer or Conformer [1,53]), or even the 
traditional hybrid DNN-HMM ASR frameworks [54,55], exploring to 
improve an E2E ASR model with a spelling correction backend for code-

switching ASR is limited.

In this study, we focus on improving Mandarin-English CS ASR per-

formance by taking the E2E ASR model Conformer [53] with a spelling 
correction backend as our strong baseline. A novel TripleT-E2E frame-

work is proposed, it leverages the attributes of individual languages 
that learned from large amount of monolingual corpus to improve CS 
ASR performance. The symmetric language-specific encoders, bilingual 
acoustic learner (BAL) for enhancing the fundamental ASR module, and 
the context plus acoustic learner (CAL) for boosting the spelling correc-

tor are investigated.

3. Conformer-based E2E ASR

In this paper, all of our contributions are based on convolution-

augmented Transformer (Conformer) E2E ASR model that has been 
proposed in [53]. The whole architecture of Conformer is shown in 
Fig. 1. Given the raw audio, we first extract the log Mel-filter bank 
(FBANK) as the acoustic features, next, these FBANKs are sub-sampled 
using the CNN Sub-sampling block, which is a crucial step in allevi-

ating computational demands and emphasizing significant information 
for speech recognition. To provide positional information, positional en-

coding is incorporated into the features. Then, the positional encoded 
features are fed into an Encoder-Decoder structure to produce the fi-

nal speech transcription. Specifically, the Encoder is used to extract 
high-level acoustic representative embeddings, these acoustic embed-

ding and the positional encoded token embedding (the output token at 
the previous time step 𝑦1∶𝑙−1) are further transformed by the Decoder 
block, followed by a linear transformation and a softmax function to 
produce the final posterior probabilities on a set of target modeling to-

kens. These tokens are usually the phonemes, characters or sub-word 
units.

The Encoder and Decoder in Fig. 1 have different structures. In this 
study, the Encoder is composed of several Conformer blocks with self-

attention mechanism, while the Decoder consists of several Transformer 
blocks with a masked source-target multi-head attention. In order to 
benefit from the monotonic alignment, the Connectionist Temporal 
Classification (CTC) loss function and attention-based mechanisms are 
used to jointly train the model in a multi-objective manner.

Different from the standard Transformer-based E2E ASR system de-

sign [56], the Conformer-based E2E ASR replaces the original feed-

forward layer in the Transformer encoder block into two half-step 
feed-forward layers which are inspired by MacaronNet [57]. This re-

placement enhances the model an improved ability to capture complex 
patterns and dependencies within the input sequence. For enhancing 
the local information modeling capability, the Conformer also uses 
a convolution module that contains a gating mechanism after multi-

headed self-attention. By combining self-attention with convolutional 
3

techniques, the Conformer encoder is good at capturing both short-
range and long-range connections in sequential data. Due to its consis-

tently superior performance across a wide range of ASR tasks, more and 
more Conformer variants have been explored in recent years [58,59].

The basic Conformer block of Encoder in Fig. 1 mainly consists 
of four modules: (1) the first half-step feed-forward module (FFN1): 
Processing the input sequence by applying the feed-forward transforma-

tion; (2) the multi-head self-attention module (MHSA): Capturing global 
dependencies by allowing the model to attend to different parts of the 
input sequence simultaneously; (3) the convolution module (Conv): In-

corporating convolutional operations, including a gating mechanism, to 
enhance local information modeling. and (4) the second half-step feed-

forward module (FFN2): Completing the feed-forward transformation, 
combining the acquired features to generate the ultimate output. Given 
an input sequence 𝑥, the output 𝑦 of a Conformer block can be mathe-

matically defined as follows:

𝑥FFN1
= 𝑥+ 1

2
FFN(𝑥),

𝑥MHSA = 𝑥FFN1
+MHSA(𝑥FFN1

),

𝑥Conv = 𝑥MHSA + Conv(𝑥MHSA),

𝑥FFN2
= 𝑥Conv +

1
2
FFN(𝑥Conv),

𝑦 = LayerNorm(𝑥FFN2
)

(1)

The Transformer block structure of the Decoder in Fig. 1 is the same 
as in standard Transformer-based E2E ASR system design [56]. For fur-

ther details on the Conformer end-to-end automatic speech recognition, 
please refer to [53] as your reference.

4. The proposed TripleT-E2E CS ASR framework

In this section, we provide an in-depth exploration of our pro-

posed TripleT-E2E CS ASR framework, specifically designed to enhance 
the performance of end-to-end code-switching speech recognition. The 
framework integrates symmetrical language-specific encoders, namely 
ZH-encoder (for Mandarin) and EN-encoder (for English), pre-trained 
on monolingual datasets to capture nuanced acoustic information. Ad-

ditionally, a Bilingual Acoustic Learner (BAL) plays a key role in com-

bining language-specific representations and transferring monolingual 
attributes to code-switching properties. To boost overall accuracy, the 
proposed framework also includes a spelling correction(SC) system with 
a Context plus Acoustic Learner (CAL). The training involves three 
stages: pre-training, adaptation, and fine-tuning. The whole model ar-

chitecture is presented in Section 4.1. The tri-stage training strategy and 
multi-objective learning method are described in detail in Section 4.2

and 4.3, respectively.

4.1. Model architecture

The whole proposed tri-stage training two-pass (TripleT) The E2E 
framework for the Mandarin-English code-switching speech recognition 
is illustrated in Fig. 2. In this TripleT-E2E framework, the ‘two-pass’ 

means the final ASR inference implements a standard Conformer in 
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Fig. 2. The framework of proposed tri-stage training two-pass (TripleT) E2E CS ASR.
the first pass and includes spelling correction in the second pass. The 
three-stage training process comprises the following phases: (1) Pre-
training: This initial stage focuses on preparing the model through 
a pre-training process. (2) Adaptation: The second stage involves 
adapting the model to better suit the characteristics of Mandarin-

English code-switching speech. (3) Fine-tuning: The third and final 
stage encompasses fine-tuning the model, refining it for optimal perfor-

mance in the code-switching ASR task. The resultant model from this 
stage is utilized for ASR inference.

As shown in Fig. 2 I, before the tri-stage model training, we need 
to extract the FBANK acoustic features and perform CNN sub-sampling 
to obtain the final model inputs 𝑋𝑖, 𝑖 ∈ {𝑍𝐻, 𝐸𝑁, 𝐶𝑆}. In Fig. 2, the 
model structures of Pre-training and the last two stages are very 
different. Based on the standard Conformer structure that described 
in Section 3, we additionally add two symmetric language-specific en-

coders, the ZH-encoder and EN-encoder, one bilingual acoustic learner 
(BAL), and the spelling corrector backend with a context plus acoustic 
learner (CAL) module in the TripleT-E2E CS ASR framework. The Con-

former module is the Encoder-Decoder structure in Fig. 1. Except for 
the BAL and CAL modules, all the -encoder and decoder in the proposed 
TripleT-E2E framework have the same structures as the ones contained 
in standard Conformer module. Beyond the standard Conformer, the 
principle details of all our proposed modules are presented below.

Symmetric Language-specific Encoders: In our CS ASR task, the 
symmetric ZH-encoder and EN-encoder are designed for capturing the 
high-level acoustic representation of the matrix language Mandarin and 
4

the embedding of foreign language English, respectively. As depicted in 
Fig. 2 (a), both encoders are well pre-trained using a large amount of 
corresponding monolingual data independently. The ZH-encoder is de-

signed to capture the acoustic features of Mandarin, going through a 
strong pre-training phase with a large dataset of monolingual Mandarin 
speech. During the pre-training phase, it produces acoustic representa-

tions specific to Mandarin. These representations serve as a foundation 
for effectively capturing the acoustic information in code-switching ut-

terances involving Mandarin. Similarly, the EN-encoder is designed to 
incorporate English, going through a dedicated pre-training process 
using a substantial dataset of monolingual English speech. After pre-

training, the EN-encoder gains the ability to extract language-specific 
acoustic information unique to English. This ensures that the encoder is 
highly effective at capturing the acoustic information of English speech 
in code-switching scenarios.

Given an utterance in a code-switched language, the extractor will 
produce language-specific representations, enhancing both the linguis-

tic and acoustic information of both languages. This is particularly ad-

vantageous for the embedded foreign language, which may have limited 
data in the CS training corpus. As a result, the individual language at-

tributes can then be effectively utilized to enhance both the Conformer 
and spelling corrector of our proposed TripleT-E2E CS ASR framework.

Bilingual Acoustic Learner: The bilingual acoustic learner (BAL) is 
one component of the final model of our proposed TripleT-E2E frame-

work. As shown in Fig. 2, BAL receives the outputs of two symmetric 
language-specific encoders and transforms them to be used as input for 
the Conformer encoder. In Fig. 2, stage (2) and (3), the BAL is spe-
cially designed to replace the “Concatenate & Linear” module from 
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stage (1)(b), this is because during both the “Adaptation” and “Fine-

tuning” stages, the model is trained on limited code-switching utter-

ances and generates CS text ground-truth. In this scenario, BAL serves 
two purposes: effectively combining the acoustic representations from 
the symmetric language-specific encoders, and transferring the mono-

lingual Mandarin and English acoustic attributes into a code-switching 
property.

The structure of BAL is illustrated in Fig. 2 II, it consists of two feed-

forward layers with a residual connection. In order to make the BAL 
non-linear, we put a ReLU activation function between the two feed-

forward layers. The input embeddings 𝑋𝑎 and 𝑋𝑏 are first Concatenated 
and then layer normalized. The output 𝑋𝐵𝐴𝐿 of the BAL module can be 
mathematically defined as:

𝑋𝑓 = Concatenate(𝑋𝑎,𝑋𝑏),

𝑋𝐹 = LayerNorm(𝑋𝑓 ),

𝑋𝐵𝐴𝐿 =𝑋𝐹 + FNN(ReLU(FNN(𝑋𝐹 )))

(2)

Spelling Correction with Context plus Acoustic Learner: In ad-

dition to the language-specific symmetric encoders and the bilingual 
acoustic learner, we also incorporate a module called the context plus 
acoustic learner (CAL) into the standard Conformer based spelling cor-

rection model. This inclusion is proposed to further strengthen our 
proposed TripleT-E2E framework to improve the performance of CS 
ASR tasks.

The structure of spelling corrector is shown in the module with a 
blue background in Fig. 2. It contains an additional encoder, a CAL, and 
a decoder block. The encoder and decoder have the same structures as 
the ones in Conformer. CAL shares the same structure as our proposed 
BAL but with different inputs and plays different roles in the whole 
TripleT-E2E framework. As the name of CAL, it is inserted to enhance 
the spelling corrector by combining the information between Conformer 
hypothesis contextual and language-specific acoustic representations. 
It is worth noting that the language-specific representation CAL input 
can be only the output of ZH-encode, or EN-encoder, or the additive of 
both of them. And, the output of CAL in Fig. 2 II is a high-level infor-

mation representation with combined Conformer hypothesis contextual 
and language-specific acoustic representations. With this CAL, the final 
output of spelling corrector can be formalized as:

𝑃 (𝑦1, 𝑦2,…, 𝑦𝑑 ) =
𝐷∏
𝑑=1

𝑃 (𝑦𝑑 |𝑦1, 𝑦2,…, 𝑦𝑑−1, 𝑙ℎ𝑦𝑝,𝑋𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐−𝑎𝑠𝑟,𝑋𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐−𝑠𝑦𝑚)
(3)

where the 𝑙ℎ𝑦𝑝 and 𝑋𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐−𝑎𝑠𝑟 are the decoder hypothesis and acous-

tic embedding of encoder output of Conformer module, while the 
𝑋𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐−𝑠𝑦𝑚 is the language-specific acoustic representation produced 
by the symmetric encoders. In addition, it should be noted that the input 
of the SC module decoder is the output of the encoder in the conformer, 
and the input of the SC module additional encoder is the output of the 
conformer decoder.

4.2. Tri-stage training strategy

Our proposed TripleT-E2E framework for enhancing the CS ASR 
system is motivated by the substantial difference in data quantity be-

tween code-switching and its corresponding monolingual and foreign 
languages. It is very easy to obtain a large amount of monolingual 
data with accurate transcriptions, such as the thousands of hours of 
Mandarin and English ASR training data available from open-source re-

sources like WenetSpeech [20] and Librispeech [60] corpora. However, 
the largest available corpus we have found for Mandarin-English CS 
ASR, is the TACLS, only consists of approximately 500 hours of data, 
5

with significantly fewer code-switch acoustic events for model training.
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Therefore, in order to well utilize the information in a large amount 
of monolingual training corpus for boosting the CS ASR model training, 
the following tri-stage training strategy is proposed:

• (1) Pre-training. As shown in Fig. 2(1), the Pre-training stage 
includes two sub-stages, the first one is (a): training two language-

specific encoders (ZH/EN-encoder) independently together with 
the Conformer structure to build two independent monolingual 
ASR system, one is for Mandarin and the other is for English speech 
recognition. Because these two systems are trained from a large 
amount of Mandarin and English training data independently, after 
this stage, we believe that the ZH/EN-encoder is well-pre-trained 
and endowed with the ability to produce representative language-

specific acoustic embeddings.

The second pre-training sub-stage (b) is to train the whole Con-

former based spelling correction model using the combined Man-

darin and English training datasets (𝑋𝑍𝐻 +𝑋𝐸𝑁 ), by fixing the pa-

rameters of two pre-trained encoders (ZH/EN-encoder). This sub-

stage is to provide a good initialization of Conformer and spelling 
corrector modules for the next training stage.

• (2) Adaptation. In this stage, we froze the parameters of both 
symmetric language-specific encoders and the spelling corrector 
that initialized in the above stage (1)(b), only using the limited CS 
training data (𝑋𝐶𝑆 ) to adapt the Conformer and the inserted BAL 
and CAL to endow the model with CS speech recognition ability. 
As discussed in Section 4.1, the inserted BAL and CAL in this adap-

tation stage is to leverage the pre-trained monolingual information 
to enhance the ASR and spelling corrector.

• (3) Fine-tuning. In the last training stage, the whole model is 
fine-tuned using the code-switching training data (𝑋𝐶𝑆 ) to further 
improving the final performance of TripleT-E2E CS ASR model, 
with all the initialized parameters obtained in stage (1) and (2).

After the above tri-stage training, the final model of the proposed 
TripleT-E2E framework is then used for CS ASR inference. Thanks to 
the design of symmetric language-specific encoders, BAL and CAL, the 
tri-stage training makes the final model successfully integrates well pre-

trained monolingual information into the CS speech recognition and 
its backend spelling correction model. Because pre-training on massive 
monolingual data provides a useful initialization, establishing represen-

tative language-specific knowledge to prepare the model for adaptation. 
And in stage (2), the use of selective adaptation of key components on 
code-switching data helps transferring the language-specific informa-

tion to the target CS condition while avoiding over-fitting. The fine-

tuning stage updates all the model parameters to a code-switching style 
and finally improves the Mandarin-English code-switching ASR perfor-

mance.

4.3. Multi-objective learning

We propose utilizing a joint loss function to train all modules in the 
model architecture simultaneously. The combined loss aims to optimize 
the entire system to maximize gains from each component and enable 
complementary modeling of various aspects that are important for the 
code-switching ASR task. The formula is shown below:

 = (1 − 𝜆− 𝜇)𝑎𝑡𝑡 + 𝜆𝑐𝑡𝑐 + 𝜇𝑐𝑒 (4)

with the tuning parameters 𝜆, 𝜇 ∈ [0,1]. 𝑐𝑡𝑐 is the CTC loss of Con-

former module that provides initial sequence alignments to ground the 
model, enabling basic sequence prediction where repetitions are com-

mon. 𝑎𝑡𝑡 is the attention-based Kullback-Leibler divergence (KLD) loss 
that refines alignments and predictions in the Conformer decoder based 
on learned relationships between inputs and outputs. The cross-entropy 
(CE) loss (𝑐𝑒) in the spelling correction decoder optimizes that compo-

nent for refined prediction at the word level. In the whole TripleT-E2E 

framework tri-stage training, except for the (a) step of pre-training 



X. Wang, Y. Jin, F. Xie et al.

Table 1

Details of monolingual English (LibriSpeech), Mandarin (WenetSpeechM) cor-

pus and the code-switching TALCS datasets.

Corpus
Train Test

#Utt #Duration(hrs) #Utt #Duration(hrs)

LibriSpeech 286808 960 - -

WenetSpeech-M 1514500 1000 - -

TALCS 350000 555.9 15000 23.6

Table 2

The composition of Mandarin, English monolingual speech, and Mandarin-

English CS speech in TALCS dataset.

Mandarin English Code-Switching

Train
Ratio 53.6% 2.1% 44.2%

#Utterances 187835 7432 154732

Test
Ratio 53.1% 2.0% 44.8%

#Utterances 7975 305 6720

stage, two monolingual ASR systems are trained only using 𝑎𝑡𝑡 and 
𝑐𝑡𝑐 , all other models are trained with the combined total loss  to 
utilize multiple complementary modeling components.

In our experiments, the training dataset is quite large, including the 
pretrained 960 hrs of LibriSpeech, 1000 hrs WenetSpeech-M and 555.9 
hours of Mandarin-English code-switching data, which leads to a quite 
long model training cycle. Therefore, we did not extensively tune these 
parameters 𝜆 and 𝜇. Instead, we empirically assigned two sets of the 𝜆
and 𝜇 values on the development set, and then we picked the best one 
as 𝜆 =0.3 and 𝜇 =0.2 for all our experiments.

5. Experiments

5.1. Datasets

Two large monolingual corpora and one code-switching corpus are 
used for our system training and evaluation. Specifically, the 960-hour 
English LibriSpeech corpus [60] and 1000-hour WenetSpeech-M [20]

corpus are taken as our monolingual training data to pre-train the mod-

els in the Pre-training stage. The TALCS [19] is a dataset containing 
Mandarin-English code-switching speech data. It includes a set of 555.9 
hours for training and a set of 23.6 hours for testing. The detailed 
description of all training and test sets is shown in Table 1. In the code-

switching dataset, the TALCS contains not only CS utterances, but also 
an amount of monolingual utterances as summarized in Table 2.

5.2. Experimental setup

Features: The input acoustic features used for model training and 
evaluation consist of 80-dimensional log Mel-filter bank (FBANK) plus 
one-dimensional pitch features. These features are computed using 25 
ms windows with a 10 ms hop size over the raw speech waveform. 
To normalize the acoustic features, we apply utterance-level cepstral 
mean and variance normalization (CMVN) on the FBANK features for 
both training and testing. CMVN helps mitigate the effects of speaker 
and environment variability, making models more robust to unseen test 
conditions. During the proposed TripleT-E2E framework model train-

ing, the 81-dimensional normalized acoustic features are first passed 
through a convolutional sub-sampling module that contains two 2D con-

volutional layers with stride 2. The convolutional layers compress the 
sequence length in half while retaining important information, making 
subsequent operations more computationally efficient.

Model configurations: The monolingual Mandarin encoder (ZH-

encoder) and English encoder (EN-encoder) in the TripleT-E2E frame-

work consist of 6 Conformer encoder layers each. These layers are 
6

responsible for learning language-specific representations for Mandarin 
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and English, respectively. Each Conformer layer includes a 1024-

dimensional feed-forward, 256-dimensional self-attention with 4 heads, 
and convolutional modules.

The additional encoder in the spelling correction module has an 
identical structure to the ZH-encoder and EN-encoder, it also con-

tains 6 Conformer layers with 1024-dimensional feed-forward and self-

attention. It encodes the ASR hypotheses into representations for fusion 
with acoustic embeddings. The decoder in the spelling corrector has 
the same structure as the decoder of Conformer model, consisting of 
6 transformer [56] decoder layers. The transformer layers have 1024-

dimensional feed-forward components and utilize multi-head attention 
over the outputs of encoder and previous decoder time-steps. They gen-

erate the corrected transcription from the combined ASR hypotheses 
and acoustic representations. All our models are trained using the Adam 
optimizer [61] with a warmup learning rate schedule [62] over the first 
25,000 iterations, where the rate is gradually increased before decay-

ing. After 25,000 iterations, the learning rate follows a cosine annealing 
schedule.

Modeling units and evaluation metrics: For the Mandarin-English 
code-switching task, the proposed E2E ASR model utilizes a shared vo-

cabulary consisting of 5,000 byte-pair-encoder (BPE) [63] units and 
6,834 Mandarin Chinese characters. BPE units are generated using the 
SentencePiece library [64] by merging the most frequent character se-

quences from the training data. They allow open lexical modeling of 
both languages in a data-driven manner. To evaluate model perfor-

mance, we use the token error rate (TER) as the ASR performance 
measure. The token here refers to the unit of Mandarin character and 
English word, respectively.

6. Results and discussions

6.1. E2E ASR baseline

Table 3 presents different code-switching ASR baseline results of 
standard Conformer system with spelling correction backend (Con-

former+SC). S1 to S3 means training Conformer+SC systems with dif-

ferent training data. S4 is the fine-tuned S3 model using the limited 
TALCS training set. All systems are trained for the CS ASR task to evalu-

ate the TACLS test set. S1 is trained from the combined 960 hours of En-

glish LibriSpeech data and 1000 hours of Mandarin WenetSpeech data. 
S2 is trained only using the Mandarin-English code-switching TALCS 
training set. S3 is trained on the pooled monolingual LibriSpeech, 
WenetSpeech datasets and the code-switched training set.

From Table 3, we see that the error rate numbers for both Mandarin 
and English parts, as well as the overall test set, are significantly smaller 
in S2 compared to S1. This suggests that the acoustic and linguistic 
characteristics of code-switching differ greatly from those of monolin-

gual data, even though the monolingual training sets are much larger 
than the code-switching training set.

However, when comparing S3 with S2, the error rates are further re-

duced. This is because the addition of monolingual training data to the 
code-switching training set provides valuable complementary informa-

tion, enriching the acoustic and linguistic properties of code-switching. 
In addition, when we further fine-tune S3 model using CS data, a slight 
performance improvements are still achieved. Moreover, it is notable 
that the TERs on the code-switched English part are significantly worse 
than those on the Mandarin part. This discrepancy suggests that the 
training data for code-switching, particularly the embedded English 
words, is far less abundant compared to the Mandarin characters. The 
CS acoustic events are very sparse even the whole CS training set of 
TALCS seems relatively large. All these observations from S1 to S4 base-

line systems motivate us to propose the symmetric language-specific 
encoders to enhance the final model of proposed TripleT-E2E CS ASR 
framework. Given that S4 achieves the best results, it serves as the pri-

mary baseline for further comparison with our proposed architectures 

in the next sections.
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Table 3

Different baseline results of standard Conformer system with spelling correction backend (Con-

former+SC). For the CS test set performance evaluation, ‘All’, ‘Man’ and ‘Eng’ represent the TER% results 
on the complete test set, Mandarin characters and English words, respectively.

ID Training data
Test Set

Man Eng All

S1 Librispeech[English]+WenetSpeech-M[Mandarin] 19.41 78.38 25.32

S2 TALCS[Code-switching] 7.73 24.55 8.61

S3 Librispeech[English]+WenetSpeech-M[Mandarin]+TALCS[Code-switching] 6.62 24.45 7.97

S4 TALCS[Code-switching] 6.53 24.30 7.88

* The S4 is fine-tuned from the S3 using TALCS data.

Table 4

The results (in TER%) of proposed TripleT-E2E models. ‘CAL’ represents how the CAL module receives the acoustic em-

bedding from language-specific encoders, and ‘ZH, EN and ZH+EN embedding’ means the CAL receives the embeddings 
produced only by ZH-encoder, EN-encoder and the addition of both of them.

ID Training data System CAL
Test Set

Man Eng All

S4 TALCS[Code-switchinig] Conformer+SC - 6.53 24.30 7.88

S5 TripleT-E2E-(3) w/ ZH+EN embedding 6.59 24.40 7.93

S6 Librispeech[English]+WenetSpeech-M[Mandarin] TripleT-E2E w/ ZH embedding 6.17 18.14 6.94

S7 +TALCS[Code-switching] TripleT-E2E w/ EN embedding 6.17 17.34 6.82

S8 TripleT-E2E w/ ZH+EN embedding 6.18 17.77 6.86

S9 TripleT-E2E w/o acoustic embedding 6.22 18.62 7.08

* The S4 is fine-tuned from the S3 using TALCS data.
6.2. Results of the proposed TripleT-E2E CS ASR

Table 4 presents the performance of different variants of the pro-

posed TripleT-E2E CS ASR framework for improving the Mandarin-

English code-switching ASR performance. The Conformer ASR model 
with spelling correction backend from S4 in Table 3 is taken as our 
primary baseline for comparison. S5 utilizes the combined large data 
corpus (Librispeech+ WenetSpeech-M+TALCS) to train the proposed 
model structure (as shown in Fig. 2 (3)) from scratch with a random 
initialization, providing an additional comparison. S6 to S9 investi-

gate how the CAL module designed in the spelling corrector affects the 
adapted and fine-tuned TripleT-E2E final model. Thus, in experiments 
S6 to S8, the CAL input of the language-specific representation is the 
output of the ZH encoder, the EN encoder, and the additive of both, 
respectively. In experiment S9, no language-specific representation is 
introduced for the CAL input. All the TripleT-E2E models are trained 
using the Librispeech, WenetSpeech-M and TALCS training data in the 
tri-stage training manner.

When comparing S3 and S5, it is apparent that in S5, the two sym-

metric language-specific encoders are not pre-trained, and the entire 
model is trained from scratch without employing any specific training 
strategy. The performance is nearly identical to that of S3, showing 
no significant improvement. Therefore, merely increasing the number 
of parameters is insufficient for enhancing the performance of code-

switching speech recognition. Additionally, contrasting S4 with S5, the 
fine-tuned model in S4 outperforms the mixed-data training model in 
S5, so S4 is more suitable to be taken as a strong baseline performance. 
And, in comparison to the proposed tri-stage training framework (S6-

S9 with TripleT-E2E), the system “TripleT-E2E-(3)” with random ini-

tialization achieves significantly worse performance, emphasizing the 
effectiveness of our proposed tri-stage training strategy.

Then, comparing the results of S6 to S8 with S9, it’s clear to observe 
that by introducing the language-specific acoustic embedding does pro-

vide useful information to improve the spelling correction backend, 
especially for the foreign-embedded language English word recognition. 
Based on the system S9, system S6 to S8 are the ablation experiments to 
examine the effectiveness of using EN, ZH or both as CAL additional in-

put. Comparing S9 with S6 to S8, we see the WERs on Mandarin words 
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are only slightly reduced by introducing the ZH/EN/ZH+EN embedding 
as CAL block additional input. In contrast, the WERs on English words 
are significantly reduced when considering the EN embedding. When 
comparing S6 with S9, we indeed see a slight improvement in English 
recognition using ZH Embedding, with the WER reduced from 18.62% 
to 18.14%. However, when the EN embedding is introduced, the com-

plementary effect of ZH embedding is greatly diminished, explaining 
why S8 did not outperform S7. And, we believe that the slightly worse 
performance observed when using both ZH and EN embeddings com-

pared to using only EN embeddings is normal performance variations 
due to different model initializations across systems. In addition, we see 
that, the introduction of different types of language-specific embeddings 
do not have a great impact on Mandarin recognition, with a TER(%) of 
about 6.17. Comparing S6 to S8, the system S7 achieves the best, it 
yields a 28.6% relative reduction in TER for English output and 13.4% 
TER relative reduction for the whole CS test set over the strong base-

line S4. It indicates that the English language characteristic has been 
successfully leveraged to enhance the TripleT-E2E model, and the im-

pact of limited English words or code-switches of CS training data has 
been greatly alleviated. All these results show that our proposed frame-

work is more effective than the traditional fine-tuning methods and has 
a stronger generalization to code-switched speech.

6.3. Ablation of tri-stage training method

Fig. 3 presents the results of ablation experiments conducted to eval-

uate the effectiveness of each stage in the proposed tri-stage training 
strategy. The pre-training, adaptation, and fine-tuning stages are the 
same as described in Section 4.2 and illustrated in Fig. 2. All results are 
derived from the three training stages of system S7, as shown in Table 4, 
which achieves the best results among the baseline systems.

In Fig. 3, the TER(%) performance for three parts of the code-

switching test set is represented by three different color bars. The blue, 
white, and yellow bars correspond to the token error rate (TER) on the 
Mandarin part (‘Man’), English part (‘Eng’), and the entire CS test set 
(‘All’), respectively. It can be observed from Fig. 3 that the TER val-

ues on the code-switching test set gradually decrease throughout the 
tri-stage model training, with the highest TERs in the pre-training stage 
(a) and the best ASR performance in the final model’s fine-tuning stage 

(c). This indicates that each training stage proposed in Fig. 2 plays a 
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Fig. 3. Ablation study of the proposed tri-stage training strategy.

crucial role in improving the final model’s performance and leveraging 
its potential.

After the tri-stage training, the final model S7 achieves TERs of 
6.17%, 17.34%, and 6.82% for the Mandarin part, the English part, 
and the entire code-switching test set, respectively. Comparing it to the 
training only on combined monolingual data (stage (a)), adapting the 
model using code-switching data (stage (b)) provides significant gains, 
especially in English recognition. This demonstrates the advantages of 
model adaptation with the proposed BAL and CAL blocks for exploiting 
language-specific information and learning code-switching characteris-

tics. Further improvements are attained by fine-tuning the model (stage 
(c)). Compared to conventional fine-tuning using pooled monolingual 
and code-switching training data in the S4 baseline, the ablation perfor-

mance presented in Fig. 3 confirms the success of our proposed tri-stage 
training strategy within the TripleT-E2E CS ASR framework design. We 
can conclude that incorporating language-specific information and alle-

viating the acoustic and linguistic mismatch between monolingual and 
code-switching speech through selective adaptation are both key factors 
in the success of the final model.

6.4. Model complexity analysis

Just as the Google team proposed enhancing the basic Conformer-

based E2E ASR with Spelling Correction (SC) modules in [65], the 
introduction of SC brings additional model parameters but results 
in significant performance improvements. Similarly, for our proposed 
TripleT-E2E ASR framework, we increased model complexity by intro-

ducing additional modules over the Conformer+SC baseline. However, 
as shown in Table 4, the performance improvements are substantial. 
In comparison to the baseline, our proposed TripleT-E2E ASR frame-

work introduces ZH-encoder, EN-encoder, BAL, and CAL components, 
encompassing a total of 2 layernorms, 4 feedforward networks, and 
12 conformer encoder layers. The addition of these layers naturally 
increases computational resources and model size during both train-

ing and inference. Hence, achieving an optimal tradeoff between the 
number of model parameters and performance enhancement remains a 
considerable challenge.

7. Conclusion

In this study, we proposed a new framework called TripleT (tri-stage 
training two-pass) E2E for improving Mandarin-English code-switching 
speech recognition. Our framework consists of two inference passes: 
the first pass uses the Conformer model, while the second pass em-

ploys a spelling correction backend. To learn acoustic representations 
from a large amount of monolingual data, we introduced two symmetric 
language-specific encoders in the TripleT-E2E CS ASR framework. These 
8

language-specific representations are then combined using a bilingual 
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acoustic learner (BAL) to transfer the monolingual acoustic attributes to 
the code-switching style. Additionally, we utilized pre-trained represen-

tations to enhance the spelling corrector through a context plus acoustic 
learner (CAL) with the same structure as BAL.

We performed experiments on the publicly available TALCS Man-

darin-English code-switching ASR corpus. The results demonstrate 
that our proposed tri-stage training approach, along with the use of 
language-specific encoders and the BAL and CAL modules, significantly 
improved the performance of the basic ASR and spelling corrector 
modules. Compared to the competitive Conformer-based two-pass E2E 
baseline model, our final TripleT-E2E model achieved a relative reduc-

tion of 13.4% in token error rate. Our proposed framework offers a 
promising direction for future research in this field, highlighting the 
importance of leveraging language-specific information and utilizing 
tri-stage training strategies to address the sparse training data prob-

lem of code-switching. Our future work will focus on generalizing the 
proposed framework to other code-switching ASR tasks.
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