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Abstract: A household consumption and optimal portfolio problem pertinent to life insurance (LI)
in a continuous time setting is examined. The family receives a random income before the parents’
retirement date. The price of the risky asset is driven by the exponential Ornstein–Uhlenbeck (O-U)
process, which can better reflect the state of the financial market. If the parents pass away prior to their
retirement time, the children do not have any work income and LI can be purchased to hedge the loss
of wealth due to the parents’ accidental death. Meanwhile, utility functions (UFs) of the parents and
children are individually taken into account in relation to the uncertain lifetime. The purpose of the
family is to appropriately maximize the weighted average of the corresponding utilities of the parents
and children. The optimal strategies of the problem are achieved using a dynamic programming
approach to solve the associated Hamilton–Jacobi–Bellman (HJB) equation by employing the convex
dual theory and Legendre transform (LT). Finally, we aim to examine how variations in the weight of
the parents’ UF and the coefficient of risk aversion affect the optimal policies.

Keywords: life insurance (LI); optimal investment and consumption (OIC); exponential O-U progress;
HJB equation; Legendre transform (LT)

MSC: 49L12; 93E20; 91G10

1. Introduction

In this paper, an optimal investment and consumption (OIC) decision problem perti-
nent to a family with life insurance (LI) for the parents is examined. It is presumed that
the parents have an unspecific lifespan, and as long as they are alive, they will receive a
random work income up to retirement T > 0. If the parents pass away prior to retirement
time, the children will not have any work income. In order to guarantee that the children
can grow up successfully, the parents can buy LI to hedge the loss of wealth caused by their
accidental death. Once the parents’ retirement time has passed, however, the children will
have grown up, and they have the work income to support the family. Then, there is no
need to purchase LI for the parents. Thus, we consider [0, T] as the investment horizon.
The family is not only permitted to invest in risk-free and high-risk assets, but also earns
a random income before the parents retire. The exponential Ornstein–Uhlenbeck (O-U)
process is frequently used to explain the price of risky assets, since it can more accurately
represent the state of the financial market. Meanwhile, utility functions (UFs) of the parents
and children are individually taken into account, accounting for the nonspecific lifetime.
The main objective of the family is to achieve the largest possible weighted average of
UFs associated with the parents and children. The UFs associated with the parents and
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children are assumed to pertain to the constant absolute risk aversion (CARA) utility class.
By utilizing the convex dual theory and Legendre transform (LT), the explicit expressions of
the value function and the optimal strategies are derived. Finally, the influence of variations
in the weight of the parents’ UF and the coefficient of risk aversion on the optimal policies
is discussed.

LI has been examined in the financial field for a long time. Yaari (1965) [1] first
formulated the insurance decision on the personal finance optimization problem in the
context of discrete time. Hakansson (1969) [2] explored the life-cycle systems of consumption
and saving to consider a person’s lifetime as a discrete random variable on the interval [0, T]
with a known probability distribution. Merton (1969,1971) [3,4] scrutinized the investment
and consumption problem in a stochastic case. When the utility represented a constant
relative risk aversion (CRRA) or CARA type, a closed-form solution was also established.
Richard (1975) [5] introduced the optimal life insurance (OPT-LI) strategy of the optimal
consumption and portfolio selection model that was proposed by Merton (1969) [3]. Moore
and Young (2006) [6] investigated the OIC and OPT-LI strategies for a person. Pliska and
Ye (2007) [7] extended Richard’s model and examined the OPT-LI and consumption for a
stipendiary whose lifetime is arbitrary and unlimited. Ye (2008) [8] extended the research
work of Pliska and Ye (2007) [7] by considering investment in a financial market. Duarte
et al. (2011) [9] continued this idea and extended the model to a multi-dimensional case
with more economic interpretations. Kwak et al. (2009) [10] explored the problem of
evaluating OIC and OPT-LI for a family whose parents will receive deterministic work
income until some deterministic time horizon. Considering the legacy between generations,
Kwak et al. (2011) [11] explored a business planning problem for a family consisting of
parents and children.

All of the studies mentioned above assumed that investors received fixed work income.
However, in real life, a worker’s work income is random. Huang et al. (2008) [12] scruti-
nized an OPT-LI, OIC and portfolio choice problem involving a stochastic income process
by employing the CRRA UF. Subsequently, Huang and Milevsky (2008) [13] extended
the model. Under a general hyperbolic absolute risk aversion (HARA) preference, the
influences of the relationship between the dynamic of financial investment and human
assets on the optimal policies were specifically investigated. A similarity-lessening scheme
was exploited to proficiently obtain the numerical solution. Pirvu and Zhang (2012) [14]
examined a problem with a mean-reverting stock return and proposed an explicit solution.
Feng and Liang (2014) [15] assumed that the expected excess return rate of the risky asset
was driven by a mean-reverting process, and OIC strategies were obtained. Zeng et al.
(2015) [16] extended Huang and Milevsky (2008) [13] to a random work income that was
driven by a mean-reverting process, and an explicit solution was obtained using the CARA
UF. By employing a Heston stochastic volatility model, Liang and Zhao (2016) [17] inves-
tigated an optimal control problem of investment, consumption, and LI in the presence
of the stochastic interest rate. The optimal strategies of the problem were derived via a
dynamic programming method. Han and Hung (2017) [18] solved the OPT-LI, OIC, and
portfolio decisions of a salary earner before retirement, accounting for the interest rate and
inflation risks. By utilizing the copula and common-shock models, Wei et al. (2020) [19]
modeled interrelated lifetimes of the two salary earners. The corresponding analytical
solutions were developed for the resolution of the optimal strategies in both the copula
and a special case of the common-shock models. Koo and Lim (2021) [20] examined the
time-inconsistent agent’s OIC and OPT-LI purchase acted upon by a tariff system. Wang
et al. (2021) [21] explored optimal decisions on consumption, investment and purchasing
LI of a family involving two successive generations, parents and children, accounting for
the income increase and model uncertainties.

However, all of the above studies assumed that the risky asset followed a geometric
Brownian motion (GBM). For such a specific motion, the expected return rate µ is considered
to be unvarying, indicating the existence of a force that makes the stock price always run
in the same direction. In fact, it is not practically rational; that is to say, it cannot interpret
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the volatility of the expected return. Considering that the rising momentum and trend of
the stock price are not strong enough when it rises to a certain high level, we will take
α(µ− ln s) as the expected return rate. In the present work, we will exploit the exponential
O-U process as an alternative to the standard GBM to explain the price of the risky asset.
To the best of the authors’ knowledge, the exponential O-U process has not appeared in
previous research associated with LI problems yet.

The novel features of the present study are itemized as follows. (1) UFs of the parents
and children are individually taken into account under the uncertain lifetime. The main
objective of a family is to obtain the largest possible weighted average of utilities of the
parents and children. In another paper by Kwak et al. (2011) [11], the OIC insurance problem
of a family with the parents and children was methodically explored. Nevertheless, the
main assumption was that the parents would obtain fixed work income and the risky asset
price followed GBM. A martingale approach was then employed to solve the corresponding
optimization problem. In the present paper, it is assumed that the parents receive stochastic
work income and the risky asset price is in accordance with the exponential O-U process.
Subsequently, the approaches of stochastic control and partial differential equations (PDEs)
are exploited to examine an optimal portfolio, consumption, and LI premium choice problem
of a family. (2) Wang et al. (2021) [21] also considered an OIC insurance problem of a family
with the parents and children. However, in that paper, they assumed that the price of the
risky asset followed GBM, and they applied the robustness approach, Girsanov transform
and exponential-affine separated form to solve the optimization problem. In this paper,
we assume that the price of the risky asset follows the exponential O-U process, and we
adopt stochastic optimal control, the convex dual theory and LT methodologies to solve the
optimization problem. Our methods are different from those described in [11,21]. (3) The
exponential O-U process and stochastic work income increase the dimension of the HJB
equation and make the problem more complicated and difficult to solve. As far as we know,
the traditional study of LI from the perspective of financial asset portfolio, the situation that
the risky asset satisfies the exponential O-U process has not been studied in previous works.

The present paper proceeds in the following form. In Section 2, model assumptions
are described. In Section 3, the mathematical model is established for the optimization
problem by employing the dynamic programming principle. The optimal strategies of the
problem are derived and the associated HJB equation is solved by implementing the convex
dual theory and LT methodology. In Section 4, several numerical examples are provided
to demonstrate the impacts of the model parameters on the OIC strategies. Finally, the
obtained results are briefly explained in Section 5.

2. Model Hypothesis

Herein, the basic assumption is that the parents should make decisions about consuming,
investing, and buying LI. The factor T is assumed to be a positive and finite benchmark
time horizon. (Ω,Ft,P) represents a complete probability space. {Ft} denotes the P—
augmentation of the natural filtration produced by a two-dimensional Brownian motion
(W1(t), W2(t)). The time economy factor in its own continuous form includes a financial
market as well as an insurance market.

2.1. Financial Market

Let us take into account an optimization problem of an individual family up to the
parents’ specified retirement time T. Two particular assets, a risk-free and a risky one, are
considered. The price of the risk-free asset at an arbitrary time t is represented by B(t),
which varies as in the following form

dB(t) = rB(t)dt, (1)

in which the parameter r represents the rate of risk-free interest.
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In continuing, the function of risky asset price is denoted by S(t), which is evaluated
by implementing the exponential O-U process (cf. Pan (2011) [22], Black and Karasinski
(1991) [23]).

dS(t) = α
(
µ− ln S(t)

)
S(t)dt + σ1S(t)dW1(t), (2)

in which µ, α and σ1 are certain constant values, W1(t) represents the standard BM, µ
denotes the expected return rate, and σ1 represents the volatility.

π(t) represents the amount invested in the risky asset S(t); π(t) is admissible if it is
{Ft}-adapted and satisfies the following relation∫ T

0
π(t)2dt < ∞. almost surely (a.s.)

Let us consider cp(t) and cc(t) in order as the consumption rates of the parents
and children. cp(t) and cc(t) are admissible if they are non-negative, {Ft}-progressively
measurable, and they satisfy the following relation∫ T

0
cp(t)dt < ∞ and

∫ T

0
cc(t)dt < ∞. a.s.

In particular, it is presumed that the income process satisfies the following mean-
reverting process

dY(t) =

{ [
θ − kY(t)

]
dt + σ2dW2(t), t < τ̂

0. t ≥ τ̂
(3)

Assuming that τ represents the parents’ time of death, τ̂ = min(τ, T), θ, k and σ2
denote the constant values, and W2(t) represents another standard BM. The correlation
coefficient between W1(t) and W2(t) is represented by ρ. That is, Cov[W1(t), W2(t)] = ρdt.
Wang (2009) [24] and Zeng et al. (2015) [16] exploit the process displayed in Equation (3) to
model the work income in the continuous time framework.

2.2. Life Insurance

We assume that the parents are alive at t = 0 and the parents’ lifetime τ̃ represents
a non-negative random variable displayed on the probability space (Ω,Ft,P), τ̃ does not
rely on the filtration {F (t)}t∈[0,T]. Let us introduce the hazard function λt : [0, T]→ R+; it
is the instantaneous death rate, which is defined by

λt = lim
ε→0

P(t ≤ τ̃ < t + ε|τ̃ ≥ t)
ε

.

The hazard function λt is a continuous and deterministic function. Subsequently, the
conditional probability of the survival, from age ỹ to age ỹ + t, in which ỹ denotes the age
of the parents at an initial time, is evaluated as follows

tPỹ = e−
∫ t

0 λỹ+sds.

Assuming the family’s insurance premium rate as I(t), then they receive an insurance
benefit I(τ)/λỹ+τ at the parents’ time of death τ. Further, let us define X(t) as the family’s
wealth; subsequently, the entire legacy M(t) at the time of death of the parents t can be
denoted by

M(t) = X(t) +
I(t)
λỹ+t

.
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2.3. Wealth Process

The parents start with wealth x ∈ R+ and receive income Y(t) during the period [0, τ̂].
This means that the income will be terminated by the parents’ death time τ or retirement
time T, whichever occurs first. At the time t < τ̂, the wealth of family X(t) meets the
following stochastic differential equation (SDE)

dX(t) = π(t)
dS(t)
S(t)

+
(
X(t)− π(t)

)dB(t)
B(t)

+
(
Y(t)− I(t)− cp(t)− cc(t)

)
dt

=
[
π(t)

(
α(µ− ln s)− r

)
+ rX(t) + Y(t)− I(t)− cp(t)− cc(t)

]
dt (4)

+ σ1π(t)dW1(t).

At the time t, τ̂ ≤ t ≤ T; that is, τ < T, it is implied that the parents die before T,
cp(t) = 0 and Y(t) = 0 for the period. There is no need to purchase LI for the parents, so
I(t) = 0. The family’s wealth function, X(t), satisfies the given SDE below

dX(t) =
[
π(t)(α(µ− ln S)− r) + rX(t)− cc(t)

]
dt + σ1π(t)dW1(t). (5)

3. HJB Equation

The family is faced with the problem of finding strategies that maximize the expected
discounted utility. This problem can be formulated by means of optimal control theory.

At the time t, the objective function of the family J(t, y, s, x; cp(t), cc(t), π(t), I(t)),
t < τ̂, is given by

J(t, y, s, x; cp(t), cc(t), π(t), I(t))

= Et

[
α1

∫ τ̂

t
e−δ(η−t)Up(cp(η))dη + α2

∫ T

t
e−δ(η−t)Uc(cc(η))dη + e−δ(T−t)U(XT)

]
(6)

= Et

[ ∫ τ̂

t
e−δ(η−t){α1Up(cp(η)) + α2Uc(cc(η))

}
dη + α2

∫ T

τ̂
e−δ(η−t)Uc(cc(η))dη

+ e−δ(T−t)U(XT)
∣∣ Xt = x, Yt = y, St = s

]
,

where Et is the conditional expectation operator, δ > 0 is a constant discount rate, α1 ≥ 0
and α2 ≥ 0 represent the constant weights of the UFs pertinent to the parents and children,
satisfying the relation: α1 + α2 = 1. Up(cp(t)) and Uc(cc(t)) in order denote the UFs
pertinent to the parents and children, and U(XT) represents the utility function of terminal
wealth. It is further assumed that the UFs are CARA type

Ui(ci) = −
1
γi

e−γici . i = p, c (7)

Thereby, at any time t < τ̂, the family’s value function, V(t, y, s, x), is provided by

V(t, y, s, x) = sup
{cp ,cc ,π,I}

J(t, y, s, x; cp(t), cc(t), π(t), I(t))

= sup
{cp ,cc ,π,I}

Et

[ ∫ τ̂

t
e−δ(η−t){α1Up(cp(η) + α2Uc(cc(η))

}
dη (8)

+ α2

∫ T

τ̂
e−δ(η−t)Uc(cc(η))dη + e−δ(T−t)U(XT)

]
.

The family’s objective is to find the optimal strategies c∗p(t), c∗c (t), π∗(t) and I∗(t).
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Using dynamic programming principle and Itô’s formula, we can derive that V(t, y, s, x)
satisfies the following HJB equation (cf. Huang et al. (2008) [12])

Vt − (δ + λỹ+t)V(t, y, s, x) + sup
{cp ,cc ,π,I}

{
α1Up(cp(t)) + α2Uc(cc(t))

+ H(t, y, s, x) + α2λỹ+tΦ(t, s, x +
I(t)
λỹ+t

)
}
= 0 , (9)

with the following terminal condition

V(T, y, s, x) = U(x) = − 1
γ

e−γx.

where the function H is given by

H(t, y, s, x) =
[
π(t)

(
α(µ− ln s)− r

)
+ rx + y− cp(t)− cc(t)− I(t)

]
Vx + (θ − ky)Vy

+ α(µ− ln s)sVs +
1
2

σ2
1 π(t)2Vxx +

1
2

σ2
2 Vyy +

1
2

σ2
1 s2Vss (10)

+ π(t)σ2
1 sVxs + π(t)ρσ1σ2Vxy + ρσ1σ2sVsy.

The Φ(t, s, x) satisfies the following HJB equation but without work income and life insur-
ance,

Φt + sup
{cc ,π}

{
Uc(cc(t)) +

[
π(t)

(
α(µ− ln s)− r

)
+ rx− cc(t)

]
Φx + α(µ− ln s)sΦs

+
1
2

σ2
1 π(t)2Φxx +

1
2

σ2
1 s2Φss + σ2

1 π(t)sΦxs

}
= 0. (11)

4. Model Solution
4.1. The Post-Death Period

If we want to solve the given stochastic control problem in Equation (9), we must solve
the function Φ(t, s, x) first. Now, we adopt the backward method to solve this problem.
After the death of the parents, the value function of the family for τ̂ ≤ t ≤ T, Φ(t, s, x)
satisfies Equation (11). Hence, we should now proceed to solve the equation.

In the present work, we assume γ = γc, with the terminal condition

Φ(T, s, x) = U(x). (12)

Using Equation (11), we can obtain the optimal strategies as follows

c∗∗c (t) = − 1
γc

ln(Φx),

π∗∗(t) = −
σ2

1 sΦxs +
(
α(µ− ln s)− r

)
Φx

σ2
1 Φxx

. (13)

By substituting Equation (13) into Equation (11), the following second-order PDE can be
obtained

Φt + α(µ− ln s)sΦs + rxΦx +
1
2

σ2
1 s2Φss +

1
γc

ln(Φx)Φx −
1
γc

Φx

−
[
σ2

1 sΦxs +
(
α(µ− ln s)− r

)
Φx
]2

2σ2
1 Φxx

= 0. (14)

It is worth mentioning that the stochastic control problem has been transformed into
a nonlinear second-order partial differential equation; however, it is still challenging to
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obtain the solution. As a potential solution, the problem can be transformed into a dual
one and a linear partial differential equation by employing LT and dual theory.

Definition 1. Let f : Rn → R be a convex function; for z > 0, a Legendre transform is defined by

L(z) = sup
x

{
f (x)− zx

}
.

where function L(z) represents the Legendre dual of function f (x) (see Jonsson and Sircar (2002) [25]
and Gao (2009) [26]).

If f (x) is a strictly convex function, the maximum value of the above-described
equation occurs at one point, which is indicated by x0. Then,

L(z) = f (x0)− zx0.

We define a Legendre transform as follows

Φ̂(t, s, z) := sup
x>0

{
Φ(t, s, x)− zx| 0 < x < ∞

}
, τ̂ < t < T

where the positive factor z represents the dual variable of x. The value of x, where the
optimum condition is achieved, is indicated by g(t, s, z). Therefore,

g(t, s, z) := inf
x>0

{
x| Φ(t, s, x) ≥ zx + Φ̂(t, s, z)

}
. τ̂ < t < T

This leads to

Φ̂(t, s, z) = Φ(t, s, g)− zg, g(t, s, z) = x. (15)

The functions g(t, s, z) and Φ̂(t, s, z) are closely related and each one can be called a dual
of Φ.

By differentiating Equation (15) with respect to t, s, and z, the derivatives of Φ and Φ̂
are derived in the following form, where the corresponding transformation rules can be
explained based on the works of Jonsson and Sircar (2002) [25] and Gao (2009) [26].

Φt = Φ̂t, Φs = Φ̂s, Φx = z, Φ̂z = −g,

Φxx = − 1
Φ̂zz

, Φss = Φ̂ss −
Φ̂2

sz

Φ̂zz
, Φxs = −

Φ̂sz

Φ̂zz
. (16)

At the terminal time, we indicate

Û(z) = sup
x>0

{
U(x)− zx | 0 < x < ∞

}
,

G(z) = sup
x>0

{
x| U(x) ≥ zx + Û(z)

}
.

Hence,
G(z) = (U′)−1(z).

Generally, G represents the inverse of marginal utility (see Jonsson and Sircar (2002) [25]
and Gao (2009) [26]).

Note that Φ(T, s, x) = U(x), and subsequently at the terminal time T, it can be
expressed

g(T, s, z) := inf
x>0

{
x| U(x) ≥ zx + Φ̂(T, s, z)

}
,

Φ̂(T, s, z) := sup
x>0

{
U(x)− zx

}
.
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So that

g(T, s, z) = (U′)−1(z). (17)

By substituting (16) into (14), the following equation can be obtained

Φ̂t + α(µ− ln s)sΦ̂s +
1
2

σ2
1 s2Φ̂ss +

(
α(µ− ln s)− r

)2

2σ2
1

z2Φ̂zz

−
(
α(µ− ln s)− r

)
szΦ̂sz + rgz +

z
γc

(ln z− 1) = 0.

Therefore, by taking the derivative of the equation for Φ̂ with respect to z, and then by
combining it with Φ̂z = −g, we derive

gt + rsgs +
[ (α(µ− ln s)− r

)2

σ2
1

− r
]
zgz +

(
α(µ− ln s)− r

)2

2σ2
1

z2gzz

+
1
2

σ2
1 s2gss −

(
α(µ− ln s)− r

)
szgsz − rg− ln z

γc
= 0. (18)

It is noticed that the nonlinear Equation (14) has been now transformed into the linear
Equation (18). The problem now is to solve (18) for the dual g. For an exponential UF
described by Equation (7) and based on Equation (17), the following relation is obtained

g(T, s, z) = − 1
γc

ln z.

A solution to Equation (18) can be inferred to be in the following form

g(t, s, z) = − 1
γc

[
b(t)

(
ln z + m(t, s)

)]
+ a(t), (19)

with the following boundary conditions: b(T) = 1, a(T) = 0, m(T, s) = 0.

gt = −
1
γc

[
b′(t)

(
ln z + m(t, s)

)
+ b(t)mt

]
+ a′(t),

gs = −
1
γc

b(t)ms, gz = −
1
γc

b(t)
z

,

gss = −
1
γc

b(t)mss, gzz =
1
γc

b(t)
z2 , gsz = 0.

Substituting these derivatives into Equation (18), we have

[
b′(t)− rb(t) + 1

]
ln z +

[
ra(t)− a′(t)

]
γc +

[
(

b′(t)
b(t)

− r)m + mt + rsms

+
1
2

σ2
1 s2mss +

(
α(µ− ln s)− r

)2

2σ2
1

− r
]
b(t) = 0.

This relation can be split into the following three equations

b′(t)− rb(t) + 1 = 0, (20)

ra(t)− a′(t) = 0, (21)

( b′(t)
b(t)

− r
)
m + mt + rsms +

1
2

σ2
1 s2mss +

(
α(µ− ln s)− r

)2

2σ2
1

− r = 0. (22)
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According to the terminal conditions: b(T) = 1 and a(T) = 0, the solutions to Equations (20)
and (21) are

b(t) =
1
r
+
(
1− 1

r
)
er(t−T),

a(t) = 0. (23)

Substituting (23) into (22) and combining (20), we obtain the other form of Equation (22)

− 1
b(t)

m + mt + rsms +
1
2

σ2
1 s2mss +

α(r− αµ)

σ2
1

ln s +
α2

2σ2
1
(ln s)2

+
(r− αµ)2

2σ2
1

− r = 0. (24)

An appropriate solution to Equation (24) is established with the following structure

m(t, s) = A1(t) + A2(t) ln s + A3(t)(ln s)2, (25)

with A1(T) = 0, A2(T) = 0, A3(T) = 0. Substituting (25) into (24), we get

[
− 1

b(t)
A1(t) + A′1(t) +

(
r−

σ2
1

2
)

A2(t) + σ2
1 A3(t) +

(r− αµ)2

2σ2
1

− r
]

+
[
− 1

b(t)
A2(t) + A′2(t) + (2r− σ2

1 )A3(t) +
α(r− αµ)

σ2
1

]
ln s (26)

+
[
− 1

b(t)
A3(t) + A′3(t) +

α2

2σ2
1

]
(ln s)2 = 0.

By equating the coefficients, Equation (26) can be decomposed into the three conditions

− 1
b(t)

A3(t) + A′3(t) +
α2

2σ2
1
= 0, (27)

− 1
b(t)

A2(t) + A′2(t) + (2r− σ2
1 )A3(t) +

α(r− αµ)

σ2
1

= 0, (28)

− 1
b(t)

A1(t) + A′1(t) + (r−
σ2

1
2
)A2(t) + σ2

1 A3(t) +
(r− αµ)2

2σ2
1

− r = 0. (29)

Combining the terminal conditions, the solutions to (27)–(29) are

A1(t) =
∫ T

t

[
(r− 1

2
σ2

1 )A2(η) + σ2
1 A3(η) +

(r− αµ)2

2σ2
1

− r
]
e−
∫ η

t
1

b(v) dvdη,

A2(t) =
∫ T

t

[
(2r− σ2

1 )A3(η) +
α(r− αµ)

σ2
1

]
e−
∫ η

t
1

b(v) dvdη, (30)

A3(t) =
α2

2σ2
1

∫ T

t
e−
∫ η

t
1

b(v) dvdη.

Note that we have solved the linear Equation (18) and obtained the dual function g
of Φ; the optimal strategies for the problem related to Equation (11) can be obtained by
utilizing a CARA utility.

Theorem 1. After the death of the parents, for τ̂ ≤ t ≤ T, the value function is provided by

Φ(t, s, x) = − b(t)
γc

exp
{
− γc

b(t)
x− A1(t)− A2(t) ln s− A3(t)(ln s)2

}
,
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where

b(t) =
1
r
+ (1− 1

r
)er(t−T),

A1(t) =
∫ T

t

[
(r− 1

2
σ2

1 )A2(η) + σ2
1 A3(η) +

(r− αµ)2

2σ2
1

− r
]
e−
∫ η

t
1

b(v) dvdη, (31)

A2(t) =
∫ T

t

[
(2r− σ2

1 )A3(η) +
α(r− αµ)

σ2
1

]
e−
∫ η

t
1

b(v) dvdη,

A3(t) =
α2

2σ2
1

∫ T

t
e−
∫ η

t
1

b(v) dvdη.

The optimal admissible investment consumption strategies are provided by

c∗∗c (t) =
1
γc

[ γc

b(t)
x + A1(t) + A2(t) ln s + A3(t)(ln s)2],

π∗∗(t) =
b(t)
γc

[α(µ− ln s)− r
σ2

1
− A2(t)− 2A3(t) ln s

]
. (32)

Proof. From Equations (19), (23), (25) and (30), we can obtain the dual function

g(t, s, z) = − b(t)
γc

[
ln z + A1(t) + A2(t) ln s + A3(t)(ln s)2].

Combining the equation g(t, s, z) = x yields

z = exp
{
− γc

b(t)
x− A1(t)− A2(t) ln s− A3(t)(ln s)2

}
.

Integrating both sides of the equation Φx = z, and combining the terminal condition
Φ(T, s, x) = − 1

γc
e−γcx, we conclude

Φ(t, s, x) = − b(t)
γc

exp
{
− γc

b(t)
x− A1(t)− A2(t) ln s− A3(t)(ln s)2

}
.

From (13) and the value function Φ, we obtain the optimal admissible investment consump-
tion strategies

c∗∗c (t) =
1
γc

[ γc

b(t)
x + A1(t) + A2(t) ln s + A3(t)(ln s)2

]
,

π∗∗(t) =
b(t)
γc

[α(µ− ln s)− r
σ2

1
− A2(t)− 2A3(t) ln s

]
.

4.2. The Pre-Death Period

Now we have obtained the function Φ, we will substitute it into Equation (9) to
achieve our goal. When the parents are alive, we can solve V using a method similar to the
post-death period. As demonstrated by Equations (9) and (10), the optimal strategies are
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c∗p(t) = −
1

γp
ln
(Vx

α1

)
,

c∗c (t) = −
1
γc

ln
(Vx

α2

)
,

I∗(t) = −
b(t)λỹ+t

γc

[
ln Vx − ln α2 +

γc

b(t)
x + m(t, s)

]
, (33)

π∗(t) = −
(
α(µ− ln s)− r

)
Vx + σ2

1 sVxs + ρσ1σ2Vxy

σ2
1 Vxx

.

Substituting them into Equation (9), we obtain

(δ + λỹ+t)V = Vt −
( 1

γp
+

1
γc

)
Vx + (rx + y)Vx +

1
γp

ln(
Vx

α1
)Vx +

1
γc

ln(
Vx

α2
)Vx

+
b(t)λỹ+t

γc

[
ln Vx − ln α2 +

γc

b(t)
x + m(t, s)− 1

]
Vx + (θ − ky)Vy (34)

+ α(µ− ln s)sVs +
1
2

σ2
2 Vyy +

1
2

σ2
1 s2Vss + ρσ1σ2sVsy

−

[(
α(µ− ln s)− r

)
Vx + σ2

1 sVxs + ρσ1σ2Vxy

]2

2σ2
1 Vxx

.

Remark 1. It should be noticed that the stochastic control problem has been transformed into
a nonlinear second-order PDE. The explicit solution can only be obtained in the special case of
ρ = ±1; that is to say, the BMs of the risky asset and the wage are completely positive correlation or
completely negative correlation. If the risk aversion coefficients γp, γc and γ will be dissimilar, the
explicit solution cannot be sought. Therefore, it is assumed that γp = γc = γ.

Similar to Section 4.1, we exploit LT and dual theory

V̂(t, y, s, z) = V(t, y, s, f )− z f , f (t, y, s, z) = x. (35)

Equation (35) is similar to Equation (15). By differentiating Equation (35) with respect to t,
s, y and z, we obtain

Vt = V̂t, Vx = z, Vs = V̂s, Vy = V̂y,

Vxx = − 1
V̂zz

, Vxs = −
V̂sz

V̂zz
, Vss = V̂ss −

V̂2
sz

V̂zz
,

Vsy = V̂sy −
V̂szV̂yz

V̂zz
, Vyy = V̂yy −

V̂2
yz

V̂zz
, Vxy = −

V̂yz

V̂zz
.

Substituting these derivatives into (34), differentiating V̂ with respect to z, and combining
V̂z = − f , we derive

ft − (2λỹ+t + δ + r) f + rs fs +
[
θ − ky− β

(
α(µ− ln s)− r

)]
fy +

1
2

σ2
1 s2 fss

+
1
2

σ2
2 fyy −

[
r + λỹ+t −

(
α(µ− ln s)− r

)2

σ2
1

]
z fz − β

[
α(µ− ln s)− r

]
z fyz

+

(
α(µ− ln s)− r

)2

2σ2
1

z2 fzz −
[
α(µ− ln s)− r

]
sz fsz + βσ2

1 s fsy (36)

−
b(t)λỹ+t

γ

[
ln z− ln α2 + m(t, s)

]
− 1

γ

(
ln

z
α1

+ ln
z

α2

)
− y = 0,
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here β = ρσ2
σ1

, ρ = ±1. It should be noticed that the non-linear Equation (34) has been
transformed into the linear Equation (36). By proceeding to solve Equation (36) for the dual
f with the terminal condition

f (T, y, s, z) = − 1
γ

ln z.

An appropriate solution to Equation (36) can be sought as follows

f (t, y, s, z) = − 1
γ

[
q(t)

(
ln z + h(t, y, s)

)]
+ n(t), (37)

with the following boundary conditions: q(T) = 1, n(T) = 0, h(T, y, s) = 0. By differentiat-
ing Equation (37) with respect to t, s, y and z, we derive

ft = −
1
γ

[
q′(t)

(
ln z + h(t, y, s)

)
+ q(t)ht

]
+ n′(t),

fs = −
1
γ

q(t)hs, fz = −
1
γ

q(t)
z

, fy = − 1
γ

q(t)hy,

fss = −
1
γ

q(t)hss, fzz =
1
γ

q(t)
z2 , fsz = 0,

fyy = − 1
γ

q(t)hyy, fsy =
1
γ

q(t)hsy, fyz = 0.

Substituting these derivatives into (36), we conclude[
q′(t)− (2λỹ+t + δ + r)q(t) + b(t)λỹ+t + 2

]
ln z +

[
(2λỹ+t + δ + r)n(t)− n′(t)

]
γ

+
[( q′(t)

q(t)
− (2λỹ+t + δ + r)

)
h + ht + rshs +

[
θ − ky− β

(
α(µ− ln s)− r

)]
hy

+
1
2

σ2
1 s2hss +

1
2

σ2
2 hyy + βσ2

1 shsy +
γ

q(t)
y +

(
α(µ− ln s)− r

)2

2σ2
1

− (r + λỹ+t) (38)

+
b(t)
q(t)

λỹ+t(m(t, s)− ln α2)−
1

q(t)
ln α1α2

]
q(t) = 0.

By splitting Equation (38) into the three relations

q′(t)− (2λỹ+t + δ + r)q(t) + b(t)λỹ+t + 2 = 0, (39)

(2λỹ+t + δ + r)n(t)− n′(t) = 0, (40)

[ q′(t)
q(t)

− (2λỹ+t + δ + r)
]

h + ht + rshs +
[
θ − ky− β(α(µ− ln s)− r)

]
hy

+
1
2

σ2
1 s2hss +

1
2

σ2
2 hyy + βσ2

1 shsy +
γ

q(t)
y +

(
α(µ− ln s)− r

)2

2σ2
1

(41)

− (r + λỹ+t) +
b(t)
q(t)

λỹ+t
(
m(t, s)− ln α2

)
− ln α1α2

q(t)
= 0.

By imposing the terminal conditions q(T) = 1 and n(T) = 0, the appropriate solutions to
Equations (39) and (40) are sought as follows

n(t) = 0, (42)
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q(t) = e−
∫ T

t (2λỹ+v+δ+r)dv +
∫ T

t
(λỹ+η + b(η) + 2)e−

∫ η
t

1
b(v) (2λỹ+v+δ+r)dvdη. (43)

A solution to Equation (41) is constructed with the following structure

h(t, y, s) = B1(t) + B2(t)y + B3(t) ln s + B4(t)(ln s)2. (44)

Substituting (44) into (41) and combining (39), we obtain

[
−

λỹ+tb(t) + 2
q(t)

B1(t) + B′1(t) + [θ + β(r− αµ)]B2(t) + (r−
σ2

1
2
)B3(t)

+ σ2
1 B4(t) +

(r− αµ)2

2σ2
1

+
λỹ+tb(t)

q(t)
(A1(t)− ln α2)− (r + λỹ+t)−

ln α1α2

q(t)

]
+
[
−

λỹ+tb(t) + 2 + kq(t)
q(t)

B2(t) + B′2(t) +
γ

q(t)

]
y +

[
−

λỹ+tb(t) + 2
q(t)

B3(t) (45)

+ B′3(t) + αβB2(t) + (2r− σ2
1 )B4(t) +

λỹ+tb(t)
q(t)

A2(t) +
α(r− αµ)

σ2
1

]
ln s

+
[
−

λỹ+tb(t) + 2
q(t)

B4(t) + B′4(t) +
b(t)
q(t)

λỹ+t A3(t) +
α2

2σ2
1

]
(ln s)2 = 0.

By equating the coefficients, Equation (45) can be decomposed into the four conditions

B′1(t)−
λỹ+tb(t) + 2

q(t)
B1(t) + [θ + β(r− αµ)]B2(t) + (r−

σ2
1

2
)B3(t) + σ2

1 B4(t)

+
λỹ+tb(t)

q(t)
(A1(t)− ln α2)− (r + λỹ+t)−

ln α1α2

q(t)
+

(r− αµ)2

2σ2
1

= 0, (46)

B′2(t)−
λỹ+tb(t) + 2 + kq(t)

q(t)
B2(t) +

γ

q(t)
= 0, (47)

B′3(t)−
λỹ+tb(t) + 2

q(t)
B3(t) + αβB2(t) + (2r− σ2

1 )B4(t)

+
λỹ+tb(t)

q(t)
A2(t) +

α(r− αµ)

σ2
1

= 0, (48)

B′4(t)−
λỹ+tb(t) + 2

q(t)
B4(t) +

λỹ+tb(t)
q(t)

A3(t) +
α2

2σ2
1
= 0. (49)

Combining the terminal conditions B1(T) = 0, B2(T) = 0, B3(T) = 0 and B4(T) = 0, the
solutions to (46)–(49) are

B1(t) =
∫ T

t

{
[θ + β(r− αµ)]B2(η) + (r−

σ2
1

2
)B3(η) + σ2

1 B4(η)

+
(r− αµ)2

2σ2
1

− (r + λỹ+η)−
1

q(η)
ln α1α2

+
λy+ηb(η)

q(η)
(

A1(η)− ln α2
)}

e−
∫ η

t
1

q(v) (λỹ+vb(v)+2)dvdη,

B2(t) =
∫ T

t

γ

q(η)
e−
∫ η

t
1

q(v) (λỹ+vb(v)+2+kq(s))dvdη, (50)

B3(t) =
∫ T

t

[
αβB2(η) + (2r− σ2

1 )B4(η) +
λỹ+ηb(η)

q(η)
A2(η)

+
α(r− αµ)

σ2
1

]
e−
∫ η

t
1

q(v) (λỹ+vb(v)+2)dvdη,

B4(t) =
∫ T

t

[ α2

2σ2
1
+

λỹ+ηb(η)
q(η)

A3(η)
]
e−
∫ η

t
1

q(v) (λỹ+vb(v)+2)dvdη.
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Theorem 2. When parents are alive, for 0 < t < τ̂, the value function V is provided by

V(t, y, s, x) = − q(t)
γ

exp
{
− γ

q(t)
x− B1(t)− B2(t)y− B3(t) ln s− B4(t)(ln s)2

}
,

where

q(t) = e−
∫ T

t (2λỹ+v+δ+r)dv +
∫ T

t

(
λỹ+ηb(η) + 2

)
e−
∫ η

t
1

b(v) (2λỹ+v+δ+r)dvdη,

B1(t) =
∫ T

t

{[
θ + β(r− αµ)

]
B2(η) +

(
r−

σ2
1

2
)

B3(η) + σ2
1 B4(η)

+
(r− αµ)2

2σ2
1

− (r + λỹ+η)−
1

q(η)
ln α1α2

+
λỹ+ηb(η)

q(η)
(

A1(η)− ln α2
)}

e−
∫ η

t
1

q(v) (λỹ+vb(v)+2)dvdη, (51)

B2(t) =
∫ T

t

γ

q(η)
e−
∫ η

t
1

q(v) (λỹ+vb(v)+2+kq(v))dvdη,

B3(t) =
∫ T

t

[
αβB2(η) + (2r− σ2

1 )B4(η) +
b(η)
q(η)

λỹ+η A2(η)

+
α(r− αµ)

σ2
1

]
e−
∫ η

t
1

q(v) (λỹ+vb(v)+2)dvdη,

B4(t) =
∫ T

t

[ α2

2σ2
1
+

b(η)
q(η)

λỹ+η A3(η)
]
e−
∫ η

t
1

q(v) (λỹ+vb(v)+2)dvdη.

The optimal admissible investment consumption insurance strategies are provided by

c∗p(t) =
1
γ

[ γ

q(t)
x + B1(t) + B2(t)y + B3(t) ln s + B4(t)(ln s)2 + ln α1

]
,

c∗c (t) =
1
γ

[ γ

q(t)
x + B1(t) + B2(t)y + B3(t) ln s + B4(t)(ln s)2 + ln α2

]
,

I∗(t) = −
b(t)λỹ+t

γ

[( γ

b(t)
− γ

q(t)
)

x− ln α2 +
(

A1(t)− B1(t)
)
+
(

A2(t) (52)

− B3(t)
)

ln s +
(

A3(t)− B4(t)
)
(ln s)2 − B2(t)y

]
,

π∗(t) =
q(t)

γ

[α(µ− ln s)− r
σ2

1
+ B3(t) + 2B4(t) ln s + βB2(t)

]
.

Proof. From Equations (37), (42)–(44) and (50), we can obtain

f (t, s, z) = − 1
γ

q(t)
[

ln z + B1(t) + B2(t)y + B3(t) ln s + B4(t)(ln s)2
]
.

Combining f (t, s, z) = x yields

z = exp
{
− γ

q(t)
x− B1(t)− B2(t)y− B3(t) ln s− B4(t)(ln s)2

}
.

Integrating both sides of the equation Vx = z, and combining the terminal condition

V(T, y, s, x) = − 1
γ

e−γx,
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we conclude

V(t, y, s, x) = − q(t)
γ

exp
{
− γ

q(t)
x− B1(t)− B2(t)y− B3(t) ln s− B4(t)(ln s)2

}
.

From the function (33) and the value function V, the optimal admissible investment
consumption insurance strategies can be derived

c∗p(t) =
1
γ

[ γ

q(t)
x + B1(t) + B2(t)y + B3(t) ln s + B4(t)(ln s)2 + ln α1

]
,

c∗c (t) =
1
γ

[ γ

q(t)
x + B1(t) + B2(t)y + B3(t) ln s + B4(t)(ln s)2 + ln α2

]
,

I∗(t) =−
b(t)λỹ+t

γ

[( γ

b(t)
− γ

q(t)
)

x− ln α2 +
(

A1(t)− B1(t)
)

+
(

A2(t)− B3(t)
)

ln s +
(

A3(t)− B4(t)
)
(ln s)2 − B2(t)y

]
,

π∗(t) =
q(t)

γ

[α(µ− ln s)− r
σ2

1
+ B3(t) + 2B4(t) ln s + βB2(t)

]
.

Remark 2. It is assumed that γp = γc = γ, so the family’s risk preference remains unchanged
before and after the death of the parents. Combining Theorems 1 and 2, we find that the present
wealth X(t) as well as the work income Y(t) do not influence the optimal strategy π(t).

5. Numerical Analysis

Herein, some numerical illustrations are given to demonstrate the obtained results
and to analyze the properties of the proposed optimal solutions. According to the explicit
solutions given in Equations (31), (32), (51) and (52), it is determined that variations in
the weight of the parents’ UF affect the optimal policies, and their impact is analyzed.
The parameters are chosen as follows: µ = 0.06, σ1 = 0.03, r = 0.04, δ = 0.04, t = 0, T = 30,
θ = 2000, k = 0.02, y = 50,000, σ2 = 500. We adopt the Gompertz law of mortality (see Huang
(2008) [12]) for the λỹ+t,

λỹ+t =
1

9.5
e(ỹ+t−86.3)/9.5.

We assume that ỹ = 35, which means that the parents begin to purchase LI when he or she
is thirty-five years old.

The selected parameters are similar to those in Kwak (2011) [11] and Zeng (2015) [16].
We set the initial parameters x0 = 1000, s0 = 10, α = 1. In all given numerical instances, we
assume that the parents’ work income at the age of 35 is 50,000 dollars per year, and it
increases by 3% per year before they retire at the age of 65. In this paper, we assume ρ = 1
or −1. The research methods are similar in both cases, so we only take into account the
case of ρ = 1 and present the numerical analysis.

Figure 1 demonstrates the relationhip between the weight of the parents’ UF α1 and the
parents’ optimal consumption strategy c∗p(t) for various risk aversion coefficients. Figure 2
demonstrates the relation between the weight of the parents’ UF α1 and the children’s
optimal consumption strategy c∗c (t) for various risk aversion coefficients. As the value of
α1 increases, we can observe an increase in the optimal consumption of the parents c∗p(t)
and a decrease in the optimal consumption of the children c∗c (t). When the parameter α1
is fixed, the optimal consumption strategies of the parents and children decrease as the
risk aversion coefficient grows. For large values of the risk aversion coefficient, the family
chooses conservative consumption.
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Figure 1. Relation between α1 and c∗p(t) for different risk aversion coefficients.
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Figure 2. Relation between α1 and c∗c (t) for different risk aversion coefficients.

From Figure 3, we can see that the OPT-LI strategy I∗(t) reduces as α1 grows. The
bequest motive becomes weaker as α1 becomes larger, and the tendency of the family
to exploit wealth for the current consumption rises. Figure 4 shows that the optimal
investment strategy π∗(t) is not influenced by α1 in the case of γp = γc = γ. When the risk
aversion coefficients of the parents and children are the same, the investment proportion
of the risk asset is only affected by the risk aversion coefficient, but is not related to the
consumption weight of the parents. The optimal strategies π∗(t), I∗(t), c∗p(t) and c∗c (t)
lessen as the risk of aversion coefficient γ grows. As the coefficient of the risk aversion
grows, the proportion of investment in the risk asset reduces; therefore, the extra income of
the family lessens, which affects the consumption of the family.
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Figure 4. Relation between α1 and π∗(t).

6. Conclusions

Under the assumption that the parents receive a stochastic work income and the risky
asset price is based on an exponential O-U process, the methods of stochastic control and
PDEs were exploited to examine the optimal portfolio, consumption, and LI premium
choice problem of a family. The UFs of the parents and children were considered separately.
The main aim of the family is to achieve the largest possible weighted average of utilities of
the parents and children. The mathematical foundation was rigorously established using
the dynamic programming principle. The optimal strategies of the problem were carefully
obtained and the corresponding HJB equation was solved employing the convex dual
theory and LT. Finally, how variations in the weight of the parents’ UF and the coefficient
of risk aversion affect the optimal policies was analyzed methodically.
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