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• A retrieval method based on multi-level 
combined features is proposed. 

• The features related to TOC and Chl-a 
could improve Cu estimation accuracy. 

• The feature bands related to TP could 
improve Fe estimation accuracy. 

• Hyperspectral data can be applied for 
low concentration heavy metal 
inversion.  
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A B S T R A C T   

Hyperspectral spectrum enables assessment of heavy metal content, but research on low concentration in water is 
limited. This study employed in situ hyperspectral data from Dalian Lake, Shanghai to develop a machine 
learning model for accurately determining heavy metal concentrations. Initially, we employed a combination of 
empirical analysis and algorithm-based analysis to identify the optimal features for retrieving Cu and Fe ions. 
Based on the correlation coefficients between heavy metals and water quality, the feature bands for TOC, Chl-a 
and TP were selected as empirical features. Algorithm-based feature selection was conducted by employing the 
random forest (RF) approach with the original spectrum (OR), first-order derivative reflectance (FDR), and 
second-order derivative reflectance (SDR). For the development of a prediction model, we utilized the Genetic 
Algorithm-Partial Least Squares Regression (GA-PLSR) approach for Cu and Fe ions inversion. Our findings 
demonstrated that the integration of both empirical features and algorithm-selected features resulted in superior 
performance compared to using algorithm-selected features alone. Importantly, the crucial wavelength data 
primarily located at 497, 665, 686, 831 and 935 nm showed superior results for Cu retrieval, while wavelengths 
of 700, 746, 801, 948, and 993 nm demonstrated better results for Fe retrieval. These results also displayed that 
the GA-PLSR model outperformed both the PLSR and RF models, exhibiting an R2 of 0.75, RMSE of 0.004, and 
MRE of 0.382 for Cu inversion. For Fe inversion, the GA-PLSR model outperformed other models with an R2 of 
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0.73, RMSE of 0.036, and MRE of 0.464. This research provides a scientific basis and data support for monitoring 
low concentrations of heavy metals in water bodies using hyperspectral remote sensing techniques.   

1. Introduction 

The relentless pursuit of global economic progress has resulted in the 
degradation of natural resources due to excessive exploitation and 
anthropogenic activities (Mondal and Bordoloi, 2023). Among these 
resources, water is an essential resource that plays a vital role in many 
aspects of our lives. However, water quality has suffered varying degrees 
of deterioration, and a primary concern is metal toxicity (Besser and 
Leib, 2007). It is estimated that around 40 % of the Earth’s lakes and 
rivers have been affected by heavy metal contamination (Zhou et al., 
2020). Metal toxicity in water is a significant issue that poses various 
risks to both human health and the ecosystem. Specifically, heavy metals 
such as lead (Pb), copper (Cu) and cadmium (Cd) can contaminate water 
sources through industrial activities, mining, and improper waste 
disposal, posing serious health hazards (Azizullah et al., 2021; Pandey 
and Kumari, 2023). These toxic metals can have severe effects on human 
health, including damage to the nervous system, kidneys, and liver (Le 
et al., 2019; Pinto et al., 2019). Additionally, metal toxicity has adverse 
effects on the environment. Metals leaching into water bodies can 
accumulate in aquatic organisms, disrupting their growth and repro-
duction, consequently leading to a decline in biodiversity and disturbing 
the ecological balance of aquatic ecosystems (Bashir et al., 2020). 
Moreover, contaminated water negatively impacts agricultural practices 
by impairing crop growth and reducing soil fertility (Alengebawy et al., 
2021). To address these issues, effective monitoring and regular testing 
of water quality are crucial to identify and address metal contamination 
at early stages. Consequently, there is an urgent need for development of 
reliable, cost-effective, and efficient monitoring techniques for water 
heavy metals. 

Remote sensing techniques are extensively utilized in assessing 
environmental quality by analyzing optical characteristics derived from 
spectrum data (Wang et al., 2018; Wang and Yang, 2019). High- 
dimensional hyperspectral data provides valuable insights into water 
quality parameters (Cai et al., 2022; Chi et al., 2016). Therefore, recent 
efforts have focused on developing novel approaches that utilize non- 
destructive hyperspectral techniques for assessing heavy metal con-
centration (Cheng et al., 2019; Rathod et al., 2015). However, due to the 
weak optical properties and low concentration, the application of 
hyperspectral techniques for determining heavy metals in actual envi-
ronmental samples, especially in water bodies, has been rarely reported 
(Niu et al., 2021). 

Despite being limited, there are still studies that focus on exploring 
the feasibility of using hyperspectral remote sensing for monitoring 
heavy metals in water bodies, both in situ and in the laboratory. In the 
laboratory, the ratio method was employed to calculate the extinction 
coefficient and absorption coefficient of Cu ions, Fe ions, and Cd com-
pounds, within a heavy metal concentration range of 3000–6000 mg/L. 
The results indicated that the absorption coefficient spectrum ranged 
from 400 nm to 900 nm, while the absorption peak of Cu ions was 
located at 810 nm (Liang et al., 2016a). Deng et al. (2016) revealed that 
Fe ions showed high absorption in the purple-blue light range, followed 
by green light. Liang et al. (2016b) demonstrated that cadmium sulfide 
exhibited a maximum value at 675 nm and minimum values at 550 nm 
and 830 nm, while cadmium oxide exhibited a nearly linear increase in 
reflectance from 525 nm to 900 nm. Huang et al. (2023a) used a step-
wise multivariate linear regression method with short-wavelength 
infrared spectroscopy to retrieve Cu ion concentrations ranging from 
100 to 1000 mg/L. The results identified the most sensitive wavelengths 
for Cu ions were at approximately 900 nm and 1080 nm. Laboratory 
experiments were conducted under specific conditions to obtain precise 
and controlled data. These controlled experiments aim to strengthen the 

theoretical framework in this field and optimize the utilization of 
hyperspectral remote sensing imagery for analyzing heavy metal 
concentrations. 

For in-situ measurements, Chen et al. (2010) and Chen et al. (2012) 
presented the potential application of heavy metal inversion in coastal 
regions using in situ remote sensing techniques. The results demon-
strated a strong correlation between Cu and Zn concentrations (ranging 
from 2 to 50 mg/L) at a wavelength of approximately 711 nm, based on 
the symbolic regression method and a correlative relationship. Liu et al. 
(2013) developed a piecewise algorithm to retrieve Zn concentrations in 
coastal waters, based on remote sensing reflectance and suspended 
sediment size, within a range of 5.67–86.62 mg/L. Liang et al. (2019) 
obtained spectral reflectance, extinction coefficient, scattering coeffi-
cient, and absorption coefficient for a typical heavy metal-contaminated 
water body, and a stable reflectance peak in the range of 600–700 nm 
was used as a feature band to distinguish the heavy metal-contaminated 
water body by visual interpretation within a range of 2.5–484 mg/L. 
Deng et al. (2013) developed a physical inversion model using the 
radiative transfer theory to retrieve concentrations of Fe and Cu ions in 
natural water. The model provided concentration estimates within the 
ranges of 0–526 mg/L and 0–4 mg/L respectively, utilizing HJ-1 A high- 
spectral images. Rajesh et al. (2020) applied recursive linear regression 
to establish the relationship between heavy metal concentration and 
remote sensing reflectance in rivers. Rostom et al. (2017) developed 
linear regression models to detect Cu concentrations ranging from 0.045 
to 0.07 mg/L and Fe concentrations ranging from 0.005 to 0.2 mg/L 
using hyperspectral data in the visible and near-infrared (VNIR) range 
(350–1050 nm) from in-situ measurements of lake water samples in 
India. In-situ measurements are deemed feasible for estimating heavy 
metal concentrations, however, their sensitivity to varying environ-
mental conditions restricts their applicability to regional or larger scales 
(Abd-Elrahman et al., 2011). 

In addition to the aforementioned restrictions, the application sce-
narios have mostly focused on regions with high concentrations of heavy 
metals, specifically Cu and Fe ions exceeding 1 mg/L. In fact, the 
quantity of heavy metals in freshwater is relatively low, with Cu ions 
typically found at less than 0.01 mg/L and Fe ions at less than 0.1 mg/L, 
posing challenges for accurate detection using remote sensing imagery 
or in-situ spectral measurements. It is worth mentioning that Guo et al. 
(2022) revealed the possibility for low concentration heavy metal 
retrieval. They found that the lowest detectable concentration of CuSO4 
might be less than 0.15 mg/L within the wavelength range of 
460.04–496 nm, whereas the lowest detectable concentration of CdS 
might be less than 0.001 mg/L within the ranges of 460.04–493.59 nm 
and 526.89–594.79 nm. However, the impact of interfering substances 
such as Chl-a, TOC, TN, and TP on heavy metal retrieval in water bodies 
was not considered, affecting the monitoring precision in heavy metal 
retrieval. In order to further investigate the applicability of hyper-
spectral remote sensing for low concentration heavy metal retrieval, this 
study aimed to develop an improved method for the efficient quantifi-
cation of Cu and Fe concentrations in freshwater bodies. The main ob-
jectives of this study were: 1) to investigate the optimal features for Cu 
and Fe ions inversion; 2) to assess the performance of GA-PLSR algo-
rithms in the retrieval of in-situ hyperspectral data; and 3) to clarify the 
interrelationships between Cu and Fe concentration and water quality 
parameters. 

Y. Lin et al.                                                                                                                                                                                                                                      



Science of the Total Environment 916 (2024) 170225

3

2. Materials and methods 

2.1. Study area 

The Dalian Lake is located in the western part of Jinze Town, Qingpu 
District, Shanghai, within the Qingxi Suburban Park. It is connected to 
the south of Dianshan Lake through the Lanlu Port and ultimately to the 
Huangpu River (Liu et al., 2014). The total area of Dalian Lake is 
approximately 14.60 km2, with a water area of about 1.0 km2 (Yang 
et al., 2021). The average annual temperature of the lake is approxi-
mately 17.7 ◦C affected by subtropical monsoon climate and an annual 
precipitation is around 1050 mm, mostly concentrated from June to 
September (Shen et al., 2010). Dalian Lake is affected by tidal in-
fluences, which water level and volume are closely related to the inflow 
from the upstream and the tidal changes of the Huangpu River (Wang 
et al., 2010). The extensive farmlands surrounding the lake contribute to 
heavy metal pollution, due to the use of agricultural pesticides. Given its 
role as an important wetland ecosystem, long-term and continuous 
heavy metal monitoring is necessary. 

2.2. Field spectral measurement data 

Water sampling was conducted on April 21, 2023 in Dalian Lake. A 
total of thirty-five field water spectra and corresponding surface water 
samples (at a depth of 0–20 cm) were collected within the geographical 
coordinates of 31◦ 3’ 41.31" - 31◦ 4’ 28.40" N and 120◦ 59’ 4.72" - 121◦

0’ 1.52" E. The sampling points were evenly distributed across the lake 
surface (shown in Fig. 1). In this study, high-resolution portable 

spectroradiometer SR-3500 (Spectral Evolution Inc., Lawrence, MA, 
USA) was used to measure the reflectance spectra of water samples on- 
site. The SR-3500 has a spectral range of 350–2500 nm, along with a 
spectral resolution of 3 nm between 350 and 1000 nm, 8 nm between 
1000 and 1900 nm, and 6 nm between 1900 and 2500 nm. Additionally, 
all spectra were resampled to 1 nm. The water spectra were collected 
using an optical bare fiber probe at a measuring height of 10 cm and a 
field of view of 25◦. To account for atmospheric variations, a white 
reference spectrum of a standard 99 % spectralon (99 % reflectance) was 
obtained prior to normalize the radiance spectrum of the samples. Each 
sample was measured five times and the resulting spectra were averaged 
to obtain a representative spectrum. 

2.3. Chemical analysis for heavy metal and water quality 

In the study, the water samples were obtained from different sites at 
a depth of − 25 cm. Portable water quality analyzers and an EXO water 
quality analyzer were used to measure pH, temperature, dissolved ox-
ygen (DO), oxidation-reduction potential (ORP), conductivity (Cond), 
and chlorophyll-a (Chl-a) directly at the sampling sites. The samples 
were then deposited in clean polyethylene containers and frozen 
promptly within a deep freezer (CNS-GB 12997-1991) for further labo-
ratory chemical analysis. The concentrations of Cu and Fe were deter-
mined by Inductively Coupled Plasma-Optical Emission Spectroscopy 
(ICP-OES, Thermo Scientific, iCAP 7400). In addition to heavy metals, 
ammonia nitrogen (NH3− N) was determined spectrophotometrically 
using salicylic acid (CNS- HJ 536-2009), total nitrogen (TN) was 
determined by Alkaline potassium persulfate digestion ultraviolet 

Fig. 1. Location of Dalian Lake and the distribution of sample sites.  
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spectrophotometric method (GB 11894-1989), total phosphorus (TP) 
was measured by Ammonium molybdate spectrophotometry method 
(GB 11893-89) and total organic carbon (TOC) was measured by non- 
dispersive infrared absorption method (HJ 501-2009). 

2.4. Heavy metal concentration estimation 

The objective of this study was to investigate the relationships be-
tween concentration of heavy metal (Cu and Fe) and hyperspectral data. 
This was achieved by using machine learning regression models to select 
the optimal features and predict the concentration of each heavy metal 
(Fig. 2). Firstly, the Savitzky-Golay (SG) smoothing filter was employed 
to reduce random noise in the in-situ field spectra. Secondly, the original 
spectrum (OR), first-order derivative reflectance (FDR), and second- 
order derivative reflectance (SDR) were utilized for feature selection 
by random forest (RF) respectively. Then the GA-PLSR model was 
employed to identify the optimal features and develop a prediction 

model for Cu and Fe retrieval. Finally, the relationship between the 
concentration of heavy metals and water quality parameters was 
analyzed, in order to provide an explanation for the selection of optimal 
features by GA-PLSR. All the statistical analyses for this study were 
conducted using MATLAB software (R2021a). 

2.4.1. Spectral noise reduction 
Since the reflectance beyond 1000 nm exhibited miscellaneous 

peaks, only the spectrum ranging from 350 to 1000 nm was selected due 
to its relatively high signal-to-noise ratio (Jupp et al., 1994). To improve 
the signal-to-noise ratio in the remaining spectral region, the widely 
used smoothing method, the Savitzky-Golay (SG) algorithm, was 
employed (Savitzky and Golay, 1964). According to the magnitude of 
spectral noise, the spectral regions were categorized into two categories. 
The spectral bands between 860 and 1000 nm were considerably noisy, 
while those between 350 and 860 nm were moderately noisy. A 
quadratic SG algorithm was employed with a smoothing window of 21 
for the considerably noisy regions, and for the moderately noisy regions, 
a quadratic SG algorithm with a smoothing window of seven was uti-
lized. Two abnormal spectra and one anomaly spectrum were excluded 
due to their reflectivity much higher than that of the normal water 
spectra. The 32 remaining field spectra were used to investigate the 
potential for estimating the concentration of heavy metals in water. 

The SG-smoothed spectrum was taken as the original spectral 
reflectance (OR). The first-order and second-order derivative reflectance 
(FDR and SDR) spectra were then processed. Derivative spectroscopy is a 
fundamental technique that utilizes the differentiation and shape of 
spectrum for sharp peaks and absorptions (Holden and LeDrew, 1998; 
Rundquist et al., 1996; Zhou et al., 2021). In this study, the technique 
was used for eliminating background signals and resolving overlapping 
signals. 

2.4.2. Feature selection 
Feature selection is particularly crucial in hyperspectral image pro-

cessing, since hundreds of bands will result in high redundancy and 

Fig. 2. Flowchart of Cu and Fe content estimation.  

Table 1 
Statistical measures of heavy metal concentrations and water quality in Dalian 
Lake in Shanghai, China.  

Parameters Minimum Maximum Mean Median Standard 
deviation 

Cu (mg/L)  0.002  0.025  0.009  0.007  0.006 
Fe (mg/L)  0.014  0.262  0.102  0.095  0.050 
DO (mg/L)  7.47  9.56  8.58  8.53  0.43 
ORP (mV)  116.8  210.6  146.8  151.5  20.7 
Conductivity 

(μS/cm)  
592  632  604  603  9 

Chl-a (μg/L)  9.20  27.09  18.62  20.13  4.60 
NTU  3  18  8  7  3 
NH3-N (mg/L)  0.11  0.52  0.30  0.27  0.10 
TP (mg/L)  0.02  0.12  0.06  0.05  0.02 
TN (mg/L)  0.40  1.91  0.95  0.89  0.37 
TOC (mg/L)  1.56  9.19  4.61  4.61  1.25  
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heavy computation. Therefore, it is necessary to identify the most sen-
sitive spectral bands for estimating and mapping water heavy metal 
concentration accurately (Wang et al., 2018). In the study, the feature 
selection strategy integrated empirical spectral feature selection with 
algorithm-based feature selection. 

Empirical spectral features were selected based on the theory of 
hyperspectral analysis for soil heavy metal prediction (Sun et al., 2023). 
To predict the concentration of Cu and Fe ions in water, we analyzed the 
water quality parameters that exhibited a strong correlation with Cu and 
Fe. Subsequently, we employed the feature bands of these highly 
correlated parameters, which had been previously identified in relevant 
studies, to estimate the concentration of heavy metals in water. 

Algorithm-based feature selection utilized the random forest (RF) 
regression model to identify the most sensitive spectral bands. The RF 
builds multiple independent decision trees to make predictions using 

randomly sampling data and features (Breiman, 2001; Grömping, 2009; 
Liaw and Wiener, 2002). The variables of OR, FDR, SDR were utilized to 
establish separate RF regression models for extracting effective spectral 
information. Initially, 70 % of the samples were used as training data to 
evaluate the relative importance of variables (OR, FDR, SDR) in each 
trial. Subsequently, the selected features with an importance greater 
than 0.1 were combined as predictor variables. The predictor variables 
were considered optimal features if their respective R-square (R2) values 
exceeded 0.7. We evaluated three datasets for 100 trials respectively and 
determined the optimized feature variables for subsequent models. 

2.4.3. Calibration methods 
A feature library was established through empirical spectral feature 

bands and feature variables created by RF. The integration of these 
different types of variables had the potential for effective monitoring of 

Fig. 3. Correlation between heavy metal and water quality parameters.  
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heavy metal concentration. To simplify the model and improve predic-
tive performance, GA-PLSR was used for Cu and Fe inversion. The partial 
least squares regression (PLSR) is a statistical technique that is capable 
of addressing the issue of data collinearity, as well as situations when the 
number of variables significantly exceeds the sample size (Shi et al., 
2014). The Genetic Algorithm (GA) is an effective feature optimization 
strategy for refining features and reducing model complexity (Sun et al., 

2019). The integration of GA and PLSR has been proved to improve 
accuracy of estimating water properties (Song et al., 2013; Sudduth 
et al., 2015). 

The initial iteration of GA consisted of randomly produced chro-
mosomes, whereby each chromosome included binary-coded genes that 
determined the activation or deactivation of certain spectral bands. To 
minimize potential bias from the random initial generation in the esti-

Fig. 4. The feature bands for estimation of Cu and Fe concentration from empirical features, OR features, FDR features and SDR features.  
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mation process, the GA-PLSR was executed 10 times. The prediction 
error sum of squares (PRESS) was employed to calculate the root-mean- 
square error of cross-validation (RMSECV), which served as a metric for 
choosing the most suitable number of components for PLSR. The equa-
tions were described as follows: 

PRESS =
∑N

i=1

(
y′

i − yi
)2  

RMSECV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
PRESSk

N

√

where y′
i represented the predicted value for the sample i, yi represented 

measured concentration of the sample i, and k represented the number of 
components used in a PLSR model. 

2.4.4. Model evaluation 
The models were evaluated with the coefficient of determination for 

prediction (R2), the root-mean-square error (RMSE), and the mean 
relative error (MRE), which were defined as 

R2 = 1 −
∑n

i=1(ŷi − yi)
2

∑n

i=1
(yi − y)2  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

MRE =

∑n
i=1

|yi − ŷ i |

yi

n  

where n represented the number of samples, yi represented the ith 
measured value, ŷi represented the ith predicted value, and y repre-
sented the average of the measured values. In general, a higher R2 value 
combined with lower RMSE and MRE values indicates improved pre-
dictive performance. 

3. Results 

3.1. Heavy metal concentrations and water quality in Dalian Lake 

According to the results presented in Table 1, the mean value of Cu 
content of the 35 water samples was found to be 0.009 mg/L, while the 
median value was determined to be 0.007 mg/L. Similarly, the mean 
value of Fe content of the 35 water samples was found to be 0.102 mg/L, 
while the median value was determined to be 0.095 mg/L. Based on the 
Chinese Environmental Quality Standards for Surface Water 
(GB3838–2002), the statistical analysis revealed that all heavy metal 
parameters met Class II levels. The statistical measures of mean and 
median also suggested a nearly symmetrical distribution of Cu and Fe 
concentrations. These findings indicated that the variables were inde-
pendent and appropriate for regression analysis. 

As for nutrient related parameters, the analysis of water quality 
revealed that TP ranged from Class II to Class V, with Class II-III stan-
dards accounting for 55.9 %, Class IV standards accounting for 41.2 %, 
and Class V standards accounting for only 2.9 %. The TN samples ranged 
from Class I to Class V, with Class III-IV standard accounting for 82.4 %. 
The NH3-N samples ranged from Class I to Class III, with proportions of 
5.9 %, 88.2 %, and 5.9 % respectively. Overall, the nutrient content in 
Dalian Lake was considered to be serious, resulting in a Class IV classi-
fication for the lake’s water quality. 

The Pearson correlation coefficients between water quality param-
eters and heavy metals were also investigated. Fig. 3 illustrated the 
correlation analysis for the seven water quality parameters. The results 
revealed a close relationship between TOC and Chl-a with Cu concen-
tration in water. This relationship was demonstrated by the highest 
correlation coefficients of 0.49 and 0.43, respectively, as shown in Fig. 3 
(a) and (b). Moreover, Fig. 3 (a) illustrated the close relationship be-
tween the concentration values of TP and Fe with correlation co-
efficients of 0.43. Furthermore, Fig. 3 (c) highlighted the feature 
importance values obtained from the RF model for assessing water 
quality parameters. The results from RF indicated that TOC and Chl-a 
were the most correlated parameters with Cu, while TP was correlated 
with Fe. The empirical feature bands of TOC and Chl-a in hyperspectral 
data were employed for Cu inversion, while the empirical feature bands 
of TP were utilized for Fe inversion. 

3.2. Spectral features for Cu and Fe content inversion 

The empirical spectral features and the RF regression model were 
used initially to identify the feature bands of Cu and Fe content (outlined 
in Section 2.4.2). This analysis confirmed that a total of 30 spectral 
variables including 8 empirical features, 11 OR, 9 FDR and 2 SDR were 
employed by GA-PLSR modeling for Cu inversion. For Fe inversion, GA- 
PLSR modeling utilized 25 spectral variables, including 3 empirical 
features, 9 OR, 10 FDR, and 3 SDR variables. The recommended number 
of latent variables (LVs) for both Cu and Fe inversion using GA-PLSR was 
determined to be five. 

Fig. 4 presented the results of the feature bands. Specifically, the 
empirical features of 665 and 686 nm, the wavelengths of 497 nm in OR, 
935 nm in FDR, 831 nm in SDR showed a significant correlation with Cu 
ion content (Fig. 4 (a)). This implied that the surface reflectance of 497, 
665 and 686 nm, the slope of reflectance change in relation to wave-
lengths 935 nm, and the variation in slope concerning wavelength 831 
nm could provide effective information for Cu ion inversion. Similarly, 
the empirical features of 700 nm, the wavelengths of 948 and 993 nm in 
FDR, 746 and 801 nm in SDR represented a relatively high correlation 
with Fe ion (Fig. 4 (b)). Hence, the surface reflectance of 700 nm, the 
slope of reflectance change in relation to wavelengths 948 and 993 nm 
and the variation in slope concerning wavelength 746 and 801 nm could 
provide effective information for Fe ion inversion. 

3.3. Performance of GA-PLSR inversion model 

The total of 32 experimental datasets were applied for calibration of 
modeling. These datasets were randomly divided into training and test 
sets, comprising 22 samples for training and 10 samples for testing, 
following a ratio of 2:1. 

The RF, PLSR, and GA-PLSR models were employed to estimate the 
concentrations of the heavy metals Cu and Fe. Each model was repeated 
10 times. Additionally, two feature selection methods were compared, 
namely the algorithm-based feature selection method and the combi-
nation of empirical and algorithm-based feature selection method. The 
performance of the three regression models based on two feature se-
lection methods was evaluated using the mean values of R2, RMSE, and 
MRE. The results for both heavy metals were presented in Table 2. In 
general, the combined approach of empirical analysis and algorithm- 
based analysis for feature selection achieved higher accuracy 

Table 2 
Regression results of RF, PLSR, GA-PLSR based on two feature selection 
methods.  

Metal Method Algorithm-based feature 
selection 

Empirical and algorithm-based 
feature selection 

R2 RMSE MRE R2 RMSE MRE 

Cu RF  0.45  0.004  0.437  0.53  0.004  0.424 
PLSR  0.50  0.004  0.456  0.57  0.004  0.436 
GA-PLSR  0.73  0.003  0.403  0.75  0.004  0.382 

Fe RF  0.39  0.041  0.565  0.47  0.045  0.563 
PLSR  0.41  0.051  0.554  0.54  0.037  0.466 
GA-PLSR  0.67  0.039  0.464  0.73  0.036  0.464  
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Fig. 5. Scatter plots of measured and predicted Cu and Fe ion contents of RF, PLSR and GA-PLSR models.  
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compared to algorithm-based feature selection method. Moreover, the 
RF model exhibited the lowest accuracy with the smallest R2 values 
among all models. Although the PLSR model incorporating combined 
features demonstrated relatively good results for the parameter Cu, it 
failed to satisfy the accuracy requirements for both Cu and Fe inversion. 
On the other hand, the GA-PLSR algorithm achieved a high predictive 
accuracy for the inversion of both Cu and Fe. This was evident from the 
R2 values greater than 0.7 and having the smallest values for both RMSE 
and MRE. 

The scatter plots in Fig. 5 illustrated the relationship between the 
observed in situ heavy metal concentrations and the best-performed RF, 
PLSR, and GA-PLSR model predictions. All models were constructed 
using the optimal feature variables selected by empirical analysis and RF 
method. Based on the modeling results, it can be concluded that GA- 
PLSR had the highest R2 value, lowest RMSE, and lowest MRE in 
terms of feature optimization strategy, outperforming models employing 
all bands. Overall, the GA-PLSR model offered several advantages. 
Firstly, it effectively reduced the number of input variables by selecting 
the most relevant wavelengths. Additionally, the GA-PLSR model 
demonstrated a significant improvement in regression accuracy 
compared to traditional machine learning approaches such as PLSR and 
RF models. Finally, GA-PLSR model demonstrated greater robustness 
and accuracy in solving complex regression problems with the value of 
RMSE and MRE of GA-PLSR model being smaller than PLSR and RF 
models. 

4. Discussion 

4.1. Feature selection: algorithm-based vs combination of empirical and 
algorithm-based approach 

Compared to prediction based on algorithm-based feature selection 
method, the combination of empirical feature bands with algorithm- 
selected features improved prediction accuracy (Table 2). In terms of 
Cu inversion using GA-PLSR, the R2 value showed an increase from 0.73 
to 0.75. There was a slight increase in the RMSE value from 0.003 to 
0.004, whereas the MRE value decreased from 0.403 to 0.382. For Fe 
inversion based on GA-PLSR, the R2 value increased from 0.67 to 0.73. 
The RMSE value decreased from 0.039 to 0.036 and the MRE value 
remained unchanged. Due to the multicollinearity in hyperspectral data, 
there was a significant correlation between adjacent bands. Random 
forest had the potential to disregard certain highly correlated bands 
during the process of feature selection (Wei et al., 2021). Therefore, the 
incorporation of empirical features could supplement the feature library 
and subsequently improve the accuracy of heavy metal inversion. 
Moreover, the limited quantity of water samples (32 water samples) 
might influence the stability of random forest. To enhance the accuracy 
and reliability for heavy metal inversion, additional samples from 
diverse lakes were recommended in the future. 

4.2. Reasons for improving the accuracy of Cu and Fe inversion 

In this study, the empirical feature selection was developed consid-
ering empirical analysis of the relationship between Cu, Fe content and 
spectra. The results highlighted that the empirical wavelength of 665 
and 686 nm combined with algorithm-selected features contained 
valuable information for predicting Cu content. Previous studies had 
demonstrated that TOC and Chl-a exhibited certain adsorption for Cu 
(Biswas et al., 2013; Fernandes and Henriques, 1991; Le et al., 2022; 
Martínez and McBride, 1999; Semeniuk et al., 2009; Tribovillard et al., 
2008). Regarding TOC inversion in remote sensing, the linear combi-
nation of bands at 560, 665, 705 and 842 nm had the highest accuracy 
(Wang et al., 2022). For Chl-a inversion in remote sensing, reflectance 
peaks in green (~550 nm) and near-infrared (NIR, ~715 nm) and ab-
sorption peaks in blue (~433 nm) and red (~686 nm) spectral regions 
could help identify waters with varying concentrations of Chl-a (Xu 

et al., 2019). Therefore, the wavelengths of 433, 550, 560, 665, 686, 
705, 715 and 842 nm were selected as empirical features bands to es-
timate Cu concentrations. 

The results also demonstrated that the empirical wavelength of 700 
nm combined with algorithm-selected features contained valuable in-
formation for predicting Fe content. Previous research had indicated 
that the formation of ferric oxide-bound phosphorus (Fe–P) may occur 
through the adsorption of dissolved P in the water column by Fe(III) 
(oxyhydr) oxides (Dan et al., 2020; Huang et al., 2023b; Yang et al., 
2019). The reflectance at 680 nm, 700 nm, 769 nm, and near infrared 
bands was utilized to estimate TP content in waters at various depths 
(Abd-Elrahman et al., 2011). Therefore, the wavelength of 680, 700 and 
769 nm were chosen as empirical features to estimate Fe concentrations 
in water. 

5. Conclusion 

Hyperspectral data is commonly used to estimate heavy metal con-
tent in water. However, given the low concentrations of heavy metals 
involved, accurately assessing such content can be challenging. To 
address the above issues, this study investigated the feasibility of 
determining heavy metal content using hyperspectral reflectance. 
Firstly, a combination of empirical analysis and algorithm-based anal-
ysis was utilized to select the most important spectral variables 
responsible for Cu and Fe ions. During the accuracy evaluation, it was 
observed that incorporating feature bands associated with TOC and Chl- 
a could improve estimation accuracy of Cu concentration. Similarly, the 
use of feature bands linked to TP could estimate Fe concentration 
effectively. Additionally, three classic machine learning models, namely 
RF, PLSR, and GA-PLSR, were compared. Among the three methods 
tested, GA-PLSR exhibited the highest accuracy, followed by PLSR and 
RF. In summary, this study presented a valuable approach for deter-
mining the concentration of heavy metals in low concentration regions 
by utilizing hyperspectral reflectance. This approach can assist govern-
ment agencies in preventing and controlling inland water pollution. In 
future studies, the hyperspectral satellite and UAVs will be used for 
measuring heavy metals in water, thereby allowing for the creation of 
spatial distribution maps. 
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