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Asymmetric biomimetic transamination of α-keto
amides to peptides
Weiqi Cai1,2, Xuelong Qiao1,2, Hao Zhang1, Bo Li 1, Jianhua Guo1, Liangliang Zhang1, Wen-Wen Chen1 &

Baoguo Zhao 1✉

Peptides are important compounds with broad applications in many areas. Asymmetric

transamination of α-keto amides can provide an efficient strategy to synthesize peptides,

however, the process has not been well developed yet and still remains a great challenge in

both enzymatic and catalytic chemistry. For biological transamination, the high activity is

attributed to manifold structural and electronic factors of transaminases. Based on the

concept of multiple imitation of transaminases, here we report N-quaternized axially chiral

pyridoxamines 1 for enantioselective transamination of α-keto amides, to produce various

peptides in good yields with excellent enantio- and diastereoselectivities. The reaction is

especially attractive for the synthesis of peptides made of unnatural amino acids since it

doesn’t need great efforts to make chiral unnatural amino acids before amide bond formation.
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Peptides are one type of the most important compounds with
high biological activities, which are widely present in many
natural products, pharmaceutically relevant molecules, and

biological systems1–3. Especially in recent years, there appears a
growing interest in therapeutic peptides1–3 and more and more
peptide drugs have been developed (Fig. 1a)4–6. Development of

alternative new methods for the synthesis of peptides is always
highly desirable and potentially useful7,8.

Enzymatic transamination is an important process to produce
chiral amines such as amino acids in biological systems (Fig. 1b)9,10,
which is promoted by transaminases (Fig. 1c) with pyridoxal/pyr-
idoxamine 5′-phosphates as the coenzyme9–13. Mimicking the bio-
logical process14, i.e., asymmetric biomimetic transamination, affords
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a highly intriguing method to synthesize NH2-free amines from
readily available carbonyl compounds15–17. The chemistry has
attracted much attention since the 1970s18–36. The studies mainly
include stoichiometric chiral pyridoxamine-promoted asymmetric
transamination of α-keto acids18–21, pyridoxal/pyridoxamine-cata-
lyzed asymmetric transamination of α-keto acids22–26, and chiral
base/Lewis acid-catalyzed asymmetric transamination of α-keto esters
and activated ketones27–36. Asymmetric transamination of α-keto
amides can potentially provide an appealing new strategy to produce
peptides. However, to the best of our knowledge, asymmetric
transamination of α-keto amides to peptides are barely reported37,38,
although the reverse process, transamination of peptides at the
N-termini to α-keto amides, has been widely developed and already
have been successfully applied to protein modification38–45. In con-
trast to the transamination of α-keto acids, asymmetric transamina-
tion of α-keto amides to peptides remains a challenge for enzymatic
catalysis likely due to non-naturally occurring process and it is also a
challenge for chemical catalysis probably because the complicated
structure of α-keto amides requires more active catalysts to promote
transamination.

Previous studies have suggested that asymmetric 1,3-proton shift
between the ketimine intermediate and the aldimine is likely a key
step for biological transamination (Fig. 1d)11–13,46,47. In order to
accelerate this step, evolution has elegantly optimized transaminases
by incorporating a Lys residue at an appropriate position48–50. The ε-
NH2 group of the Lys residue serves as an intramolecular base to
deprotonate the benzylic C-H of the ketimine (Fig. 1d)48–50. In
addition, the pKa values of the pyridine N in the coenzyme pyridoxal
5′-phosphate (PLP) and pyridoxamine 5′-phosphate (PMP) are
around 8.551–53, thus the pyridine N is predominantly protonated in
biological systems (near pH 7)53–56. The strong electron-withdrawing
property of the protonated pyridine ring helps to increase the acidity
of the benzylic C-H bond (Fig. 1d)54–58. The two effects work
together to promote the transformation from the ketimine to the
aldimine via 1,3-proton shift, magically accelerating transamination
process. Inspired by the controlled protonation of the pyridine N of
PLP in biological systems, Rapoport has developed N-methylpyr-
idinium-4-carboxaldehyde benzenesulfonate (Rapoport’s salt) as an
effective transamination reagent for conversion of amines to carbonyl
compounds59. Francis have found that Rapoport’s salt displays sig-
nificantly improved efficiency in the transamination of proteins as
compared to pyridinium-4-carboxaldehyde, converting the N-termini
into the corresponding carbonyl groups44,45. Recently, we have
proved that introducing an amine side arm to a chiral pyridoxamine
can remarkably increase its activity and enantioselectivity for asym-
metric transamination of α-keto acids26 and also have observed that
quaternization of the pyridine N of a chiral pyridoxal leads to dra-
matical improvement of catalytic activity for asymmetric biomimetic
Mannich reaction60 and aldol reaction61 of glycinate. On the basis of
the structural characteristics of transaminases46–50,53–56 as well as the
previously reported studies26,44,45,59–62, we has designed
N-quaternized biaryl axially chiral pyridoxamines 1 bearing an amine
side arm, mimicking transaminases in multiple aspects for catalytic
asymmetric transamination of α-keto amides to peptides (Fig. 1c).
The quaternization always keeps the pyridine ring with strong
electron-withdrawing ability to improve the benzylic C-H acidity of

the ketimine intermediate during transamination, no matter under
acidic or basic conditions60,61. Like the Lys residue does in biological
transamination, the amine side arm can serve as an intramolecular
base to facilitate 1,3-proton shift.

Here we show that asymmetric biomimetic transamination of
α-keto amides 2 can be achieved by using chiral pyridoxamines 1
as the catalyst, to produce various peptides 3 with excellent
enantiopurities (Fig. 1e).

Results
Catalyst synthesis. The synthesis of chiral pyridoxamines 1
started with reductive amination of compound 526 to introduce
the amine side chain. Protecting the two amine groups with di-
tert-butyl dicarbonate gave intermediates 6 (Fig. 2). Treatment of
6 with methyl iodide and subsequent deprotection with hydro-
chloric acid afforded N-methyl pyridoxamines 1a-e in good
yields.

Condition optimization. With diphenylglycine (4) as the amine
source25,26,63, catalyst chiral pyridoxamine 1b was first tested for
the transamination of glycinyl α-keto amide 2a (Fig. 3, entry 1).
The originally-formed NH2-free transamination product was
treated with di-tert-butyl dicarbonate to avoid the cyclization to
piperazinedione during the isolation64, to give the corresponding
N-Boc-protected dipeptide 3a in 20% yield with 76% ee. Additives
have significant impacts on the reaction in terms of enantios-
electivity and activity. Increased yield and enantioselectivity were
obtained for transaminations performed in MeOH/H2O or
TFEA/H2O with HOAc/KOAc or HOAc/Na2HPO4 as the addi-
tives (Fig. 3, entries 2 and 10 vs 3–9). Chiral pyridoxamine 1b
exhibited the best performance among the catalysts 1a-e exam-
ined (Fig. 3, entries 10–14).

Substrate scope. Under the optimal conditions, various glycinyl
α-keto amides containing alkyl (for 3b-e), aromatic (for 3a and
3f-i), or heteroatomic alkyl (for 3j-k) groups were all smoothly
transaminated to give the corresponding N-Boc-protected glyci-
nyl dipeptides 3a-k in 70-94% yields with up to 98% ee (Fig. 4).
Chiral glycinyl α-keto amide (for 3 l) displayed excellent dia-
stereoselectivity (98:2 dr). Transamination of α-keto phenylbu-
tanamides of chiral amino acid esters produced various N-Boc-
protected dipeptides 3m-y in 56–93% yields with up to 99:1
diastereoselectivity. Peptidyl α-keto amides were also effective for
the asymmetric transamination, to form tripeptides 3z-ab and
tetrapeptides 3ac-ad in 60–87% yields with excellent diastereos-
electivities under very mild conditions. Various functional groups
such as C-C double bond (for 3c, 3 l and 3 y), NH2-sensitive
bromide (for 3j), silyl group (for 3k), OH group of Tyr (for 3 s),
NH group of Trp (for 3t), amide CONH2 of Asn (for 3 v), Boc-
protected Lys residue (for 3w), Boc-protected guanidine (for 3x),
and basic NH2 group of Lys (for 3ab) were all well tolerated by
the transamination likely due to the mild reaction conditions.

In order to investigate the impacts of catalyst and substrates on
diastereomeric induction, several representative α-keto amides (for
3m-n, 3r, 3v-y, and 3aa-ab) were examined respectively using (S)-
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1b (5 mol%), (R)-1b (5mol%), and achiral pyridoxamine 7 (20mol
%) as the catalyst. The corresponding peptides were formed with S
configurations of the newly generated chiral centers from catalyst
(R)-1b and R configurations from (S)-1b. The chiral pyridoxamine
catalyst dominated the stereoselectivity, while the chiral groups on
the amino acid residues of α-keto amides throwed little influence on
the diastereomeric induction probably due to being far away from
the reaction centers as well as the flexibility of the skeletons of the α-
keto amides. No matter which configuration of the catalyst 1b was
applied, excellent diastereoselectivities were always obtained, even
for α-keto amides (for 3n and 3aa) with a nearby bulky chiral
amino acid residue and for those that displayed obvious substrate-
induction on diastereoselectivity in 7-catalyzed non-asymmetric
transamination (5:95 dr for 3r and 19:81 dr for 3x). For α-keto
amide 2 y bearing two nearby chiral centers, a pair of diastereomers
(R,R,S)-3y and (R,S,S)-3y were respectively obtained in good yields

with high enantiopurities by using (S)-1b and (R)-1b as the catalyst.
The absolute configurations of the newly generated chiral centers of
peptides 3 were assigned by analog, based on the X-ray analysis of
3d, 3m, and 3r (also see Supplementary Figs. 1–3 in SI).

Synthetic applications. Divergent extending an additional amino
acid unit from a central peptide is of great interest for peptide
drug screening and bioactivity studies. The synthesis would be
difficult when the extended unit is a commercially unavailable
unnatural amino acid. The transamination process provides an
efficient strategy for the amino acid extending. For example,
starting from the benzyl ester of protease inhibitor Ubenimex
(8)65, condensation with α-keto acids and subsequent asymmetric
transamination afforded a variety of enantiopure peptides 3ae-ai
with one more amino acid residue extended (Fig. 5a). The
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Fig. 3 Investigation of reaction parameters. TFEA= 2,2,2-trifluoroethanol. aReaction conditions: 2a (0.10mmol), 4 (0.11 mmol), 1 (0.0050mmol), HOAc
(0.40mmol), base (0.20mmol) in solvent (0.48mL) and H2O (0.12 mL) at 20 °C for 48 h unless otherwise stated. The reaction mixtures were then
treated with di-tert-butyl dicarbonate (0.30mmol) at rt for 3 h. bIsolated yields based on α-keto amide 2a. cThe ee values were determined by HPLC
analysis. dReaction time was 72 h.
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unprotected OH group remained untouched during the con-
densation and transamination.

Based on the “condensation-transamination” process, a new
strategy for the synthesis of peptides also can be developed. As
illustrated in Fig. 5b, the methyl ester of DPP-IV inhibitor
Diprotin A (10)66 underwent condensation with α-keto acid 9a

and subsequent asymmetric transamination, forming tetrapeptide
3ad with excellent diastereoselectivity. Repeating the reaction
sequence two more times afforded hexapeptide 3ak with high
enantiopurity. The chirality of the extended amino acid residues
was established along with the transamination process. The
protocol is especially attractive for the synthesis of peptides made
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of unnatural amino acids, since it doesn’t need great efforts to
make NH2-protected chiral unnatural amino acids before the
amide bond formation.

Reaction mechanism. A plausible mechanism was proposed for
the transamination (Fig. 6a)11–13,25,26. Pyridoxamine 1b con-
denses with α-keto amide 2 to form ketimine 11, which under-
goes asymmetric 1,3-proton shift to aldimine 13 under the
assistance of the amine side arm46–50. Hydrolysis of aldimine 13
releases peptide 3 and generates the pydridoxal, which is in situ
converted into iminium 14 via intramolecular condensation. The
iminium 14 then undergoes decarboxylative transamination with
the amine source diphenylglycine (4) back to pyridoxamine cat-
alyst 1b25,26,63, completing a catalytic cycle.

As expected, N-quaternization of the pyridine ring of the chiral
pyridoxamines resulted in higher catalytic activity and better
enantioselectivity for the asymmetric transamination (Fig. 6b,

1b vs 1g). The stronger electron-withdrawing property makes the
benzylic C-H of ketimine 11 more acidic and also stabilizes the
corresponding delocalized carbanion 12 better54–58,67–69, thus
favoring the 1,3-proton shift and accelerating the transamination
process. The control experiment confirmed the amazing effect of
the amine side arm again (Fig. 6b, 1b vs 1f). Introducing an acetyl
group onto the nitrogen to eliminate the basicity of the amine on
the side arm led to marked decreases in activity and enantios-
electivity. The amine side arm not only promotes the 1,3-proton
shift by acting as an intramolecular base to deprotonate the
benzylic C-H of ketimine 11 (Fig. 6a) but also helps to orient the
α-keto amide by hydrogen bonding with the carbonyl oxygen of
the amide group (Fig. 6c), resulting in improved activity and
stereoselectivity48–50. Protonation of the delocalized carbanion 12
occurs at α−position of the amide group from the up side of the
pyridine ring away from the amine side arm26,46,47, to form the
newly generated chiral center with S configuration from catalyst
(R)-1b.
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Discussion
In summary, based on the concept of multiple imitation of
transaminases, we have developed N-quaternized axially chiral
pyridoxamines 1 containing an amine side arm. With pyridox-
amine 1b as the catalyst, challenging substrates α-keto amides

were successfully transaminated to peptides in good yields with
excellent enantio- and diastereoselectivities. The catalyst domi-
nated the diastereoselective control for the transamination of
chiral α-keto amides. Thus, a pair of diastereomeric peptides
could be respectively obtained with high enantiopurities by
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switching the configuration of the pyridoxamine catalyst. The
strong electron-withdrawing property of the N-quaternized pyr-
idine ring together with the cooperative catalysis of the amine
side arm account for the increased catalytic activity and selectivity
of the pyridoxamine 1b in the transamination. The reaction can
provide an efficient strategy for divergent and successive exten-
sion of peptides via condensation-transamination reaction
sequence, which is especially attractive for the synthesis of pep-
tides made of unnatural amino acids.

Methods
General procedure for the asymmetric biomimetic transamination Reaction
(Fig. 4). A mixture of α-keto amide 2 (0.10 mmol), chiral pyridoxamine 1b
(0.0050 mmol), 2,2-diphenylglycine (4) (0.11 mmol), HOAc (0.40 mmol),
Na2HPO4 or KOAc (0.20 mmol), CF3CH2OH or MeOH (0.48 mL), and H2O
(0.12 mL) was stirred at 16–25 °C for the specified time. For glycinyl α-keto amides
(for 3a-l) and α-keto phenylbutanamides of amino acid esters (for 3m-y), the crude
reaction mixtures were treated with di-tert-butyl dicarbonate (0.3 mmol) at room
temperature for 3 h after the transamination was completed, then concentrated via
rotary evaporator to remove most of the solvent and isolated by column chro-
matography on silica gel with a mixed solvent ethyl acetate and petroleum ether as
the eluant to give the products N-Boc-protected dipeptides 3a-y. For Peptidyl α-
keto amides (for 3z-ad), the reaction mixtures were submitted to concentration via
rotary evaporator to remove most of the solvent and then isolated by column
chromatography on silica gel with a mixed solvent of dichloromethane, methanol
and ammonia solution in ethanol (2.9 M) as the eluant to give the transamination
products tripeptides 3z-aa and tetrapeptides 3ab-ad without NH2-protection. The
ee and dr values of 3a-ac were determined by HPLC analysis.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and Supplementary Information file, or from the corresponding author
upon reasonable request. For the experimental procedures, characterization data, and
NMR spectra along with HPLC chromatograms, see Supplementary Information. The
X-ray crystallographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition
numbers of CCDC 2036531 (3d), CCDC 2036532 (the cyclized derivative of 3m), and
CCDC 2036529 (3r). These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via https://www.ccdc. cam.ac.uk/structures/.
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